Difference between revisions of "2011 AIME I Problems/Problem 14"
Advancedjus (talk | contribs) |
|||
Line 2: | Line 2: | ||
Let <math>A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8</math> be a regular octagon. Let <math>M_1</math>, <math>M_3</math>, <math>M_5</math>, and <math>M_7</math> be the midpoints of sides <math>\overline{A_1 A_2}</math>, <math>\overline{A_3 A_4}</math>, <math>\overline{A_5 A_6}</math>, and <math>\overline{A_7 A_8}</math>, respectively. For <math>i = 1, 3, 5, 7</math>, ray <math>R_i</math> is constructed from <math>M_i</math> towards the interior of the octagon such that <math>R_1 \perp R_3</math>, <math>R_3 \perp R_5</math>, <math>R_5 \perp R_7</math>, and <math>R_7 \perp R_1</math>. Pairs of rays <math>R_1</math> and <math>R_3</math>, <math>R_3</math> and <math>R_5</math>, <math>R_5</math> and <math>R_7</math>, and <math>R_7</math> and <math>R_1</math> meet at <math>B_1</math>, <math>B_3</math>, <math>B_5</math>, <math>B_7</math> respectively. If <math>B_1 B_3 = A_1 A_2</math>, then <math>\cos 2 \angle A_3 M_3 B_1</math> can be written in the form <math>m - \sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers. Find <math>m + n</math>. | Let <math>A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8</math> be a regular octagon. Let <math>M_1</math>, <math>M_3</math>, <math>M_5</math>, and <math>M_7</math> be the midpoints of sides <math>\overline{A_1 A_2}</math>, <math>\overline{A_3 A_4}</math>, <math>\overline{A_5 A_6}</math>, and <math>\overline{A_7 A_8}</math>, respectively. For <math>i = 1, 3, 5, 7</math>, ray <math>R_i</math> is constructed from <math>M_i</math> towards the interior of the octagon such that <math>R_1 \perp R_3</math>, <math>R_3 \perp R_5</math>, <math>R_5 \perp R_7</math>, and <math>R_7 \perp R_1</math>. Pairs of rays <math>R_1</math> and <math>R_3</math>, <math>R_3</math> and <math>R_5</math>, <math>R_5</math> and <math>R_7</math>, and <math>R_7</math> and <math>R_1</math> meet at <math>B_1</math>, <math>B_3</math>, <math>B_5</math>, <math>B_7</math> respectively. If <math>B_1 B_3 = A_1 A_2</math>, then <math>\cos 2 \angle A_3 M_3 B_1</math> can be written in the form <math>m - \sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers. Find <math>m + n</math>. | ||
− | == Solution == | + | == Solution 1== |
<asy> | <asy> | ||
size(200); | size(200); |
Revision as of 13:35, 4 July 2020
Problem
Let be a regular octagon. Let , , , and be the midpoints of sides , , , and , respectively. For , ray is constructed from towards the interior of the octagon such that , , , and . Pairs of rays and , and , and , and and meet at , , , respectively. If , then can be written in the form , where and are positive integers. Find .
Solution 1
Let . Thus we have that .
Since is a regular octagon and , let .
Extend and until they intersect. Denote their intersection as . Through similar triangles & the triangles formed, we find that .
We also have that through ASA congruence (, , ). Therefore, we may let .
Thus, we have that and that . Therefore .
Squaring gives that and consequently that through the identities and .
Thus we have that . Therefore .
Solution 2
Let . Then and are the projections of and onto the line , so , where . Then since ,, and .
Solution 3
Notice that and are parallel ( is a square by symmetry and since the rays are perpendicular) and the distance between the parallel rays. If the regular hexagon as a side length of , then has a length of . Let be on such that is perpendicular to , and . The distance between and is , so .
Since we are considering a regular hexagon, is directly opposite to and . All that's left is to calculate . By drawing a right triangle or using the Pythagorean identity, and , so .
Solution 4
Assume that Denote the center , and the midpoint of and as . Then we have thatThus, by the cosine double-angle theorem,so .
Diagram
All distances are to scale.
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.