Difference between revisions of "2003 AMC 12A Problems/Problem 1"
Franzliszt (talk | contribs) (→Solution) |
Franzliszt (talk | contribs) (→Solution 4) |
||
Line 34: | Line 34: | ||
===Solution 4=== | ===Solution 4=== | ||
In the case that we don't know if <math>0</math> is considered an even number, we note that it doesn't matter! The sum of odd numbers is <math>O=1+3+5+...+4005</math>. And the sum of even numbers is either <math>E_1=0+2+4...+4004</math> or <math>E_2=2+4+6+...+4006</math>. When compared to the sum of odd numbers, we see that each of the <math>n</math>th term in the series of even numbers differ by <math>1</math>. For example, take series <math>O</math> and <math>E_1</math>. The first terms are <math>1</math> and <math>0</math>. Their difference is <math>|1-0|=1</math>. Similarly, take take series <math>O</math> and <math>E_2</math>. The first terms are <math>1</math> and <math>2</math>. Their difference is <math>|1-2|=1</math>. Since there are <math>2003</math> terms in each set, the answer <math>\boxed{\mathrm{(D)}\ 2003}</math>. | In the case that we don't know if <math>0</math> is considered an even number, we note that it doesn't matter! The sum of odd numbers is <math>O=1+3+5+...+4005</math>. And the sum of even numbers is either <math>E_1=0+2+4...+4004</math> or <math>E_2=2+4+6+...+4006</math>. When compared to the sum of odd numbers, we see that each of the <math>n</math>th term in the series of even numbers differ by <math>1</math>. For example, take series <math>O</math> and <math>E_1</math>. The first terms are <math>1</math> and <math>0</math>. Their difference is <math>|1-0|=1</math>. Similarly, take take series <math>O</math> and <math>E_2</math>. The first terms are <math>1</math> and <math>2</math>. Their difference is <math>|1-2|=1</math>. Since there are <math>2003</math> terms in each set, the answer <math>\boxed{\mathrm{(D)}\ 2003}</math>. | ||
+ | |||
+ | Solution by franzliszt | ||
== See also == | == See also == |
Revision as of 17:58, 7 July 2020
- The following problem is from both the 2003 AMC 12A #1 and 2003 AMC 10A #1, so both problems redirect to this page.
Contents
[hide]Problem
What is the difference between the sum of the first even counting numbers and the sum of the first odd counting numbers?
Solution
Solution 1
The first even counting numbers are .
The first odd counting numbers are .
Thus, the problem is asking for the value of .
Solution 2
Using the sum of an arithmetic progression formula, we can write this as .
Solution 3
The formula for the sum of the first even numbers, is , (E standing for even).
Sum of first odd numbers, is , (O standing for odd).
Knowing this, plug for ,
.
Solution 4
In the case that we don't know if is considered an even number, we note that it doesn't matter! The sum of odd numbers is . And the sum of even numbers is either or . When compared to the sum of odd numbers, we see that each of the th term in the series of even numbers differ by . For example, take series and . The first terms are and . Their difference is . Similarly, take take series and . The first terms are and . Their difference is . Since there are terms in each set, the answer .
Solution by franzliszt
See also
2003 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2003 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.