Difference between revisions of "1976 AHSME Problems/Problem 5"
(→Problem 5=) |
(→Solution) |
||
Line 5: | Line 5: | ||
=Solution= | =Solution= | ||
− | Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>. | + | Let our two digit number be <math>\overline{ab}</math>, where <math>a</math> is the tens digit, and <math>b</math> is the ones digit. So, <math>\overline{ab}=10a+b</math>. When we reverse our digits, it becomes <math>10b+a</math>. So, <math>10a+b+9=10b+a\implies a-b=1</math>. So, our numbers are <math>12, 23, 34, 45, 56, 67, 78, 89\Rightarrow \textbf{(C)}</math>.~MathJams |
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} | {{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} |
Revision as of 19:11, 12 July 2020
Problem 5
How many integers greater than and less than , written in base- notation, are increased by when their digits are reversed?
Solution
Let our two digit number be , where is the tens digit, and is the ones digit. So, . When we reverse our digits, it becomes . So, . So, our numbers are .~MathJams
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by 1975 AHSME |
Followed by 1977 AHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |