Difference between revisions of "2020 AMC 8 Problems/Problem 20"
Icematrix2 (talk | contribs) |
(→Solution 3) |
||
Line 36: | Line 36: | ||
If we guess that Tree 4 has a height of 11, we would need to make Tree 5 have a height of 22. In this case <math>S</math> would equal <math>88</math> which is not one more than a multiple of <math>5</math>. So we instead guess that Tree 4 has a height of <math>44</math>. Then we only need to try out heights of <math>22</math> and <math>88</math> for Tree 5. Using a height of <math>22</math> for Tree 5 gives us <math>S=121</math> which is <math>1</math> more than a multiple of <math>5</math>. Thus, the average height of the trees is <math>\frac{121}{5}=24.2</math> meters <math>\implies\boxed{\textbf{(B) }24.2}</math>.<br> | If we guess that Tree 4 has a height of 11, we would need to make Tree 5 have a height of 22. In this case <math>S</math> would equal <math>88</math> which is not one more than a multiple of <math>5</math>. So we instead guess that Tree 4 has a height of <math>44</math>. Then we only need to try out heights of <math>22</math> and <math>88</math> for Tree 5. Using a height of <math>22</math> for Tree 5 gives us <math>S=121</math> which is <math>1</math> more than a multiple of <math>5</math>. Thus, the average height of the trees is <math>\frac{121}{5}=24.2</math> meters <math>\implies\boxed{\textbf{(B) }24.2}</math>.<br> | ||
− | ~ junaidmansuri | + | ~[http://artofproblemsolving.com/community/user/jmansuri junaidmansuri] |
==Solution 4== | ==Solution 4== |
Revision as of 18:36, 18 November 2020
A scientist walking through a forest recorded as integers the heights of trees standing in a row. She observed that each tree was either twice as tall or half as tall as the one to its right. Unfortunately some of her data was lost when rain fell on her notebook. Her notes are shown below, with blanks indicating the missing numbers. Based on her observations, the scientist was able to reconstruct the lost data. What was the average height of the trees, in meters?
Contents
[hide]Solution 1
It is not too hard to construct as the heights of the trees from left to right. The average is . ~icematrix
Solution 2
For the heights of the trees to be integers, we must have the height of Tree 1, Tree 2, Tree 3 as . Now, there are two possible cases.
Case 1: The length of tree 4 is - So, we have the first 4 tree lengths as . For the length of Tree 5 to be an integer, we must have the length of Tree as . But, when we take the average of these integers, it results in , which doesn't satisfy our conditions.
Case 2: The length of tree 4 is - So, we have the first tree lengths as . Now, using quick modular arithmetic, we see that when the length of Tree 5 is , the average of the heights of the 5 trees is . This is where our condition is satisfied.
~ATGY
Solution 3
Let the sum of the heights of the trees be denoted by . The average height will then be . Since the average height has decimal part , it follows that must have a remainder of when divided by . Thus, must be more than a multiple of 5. Since is an integer, it follows that the heights of Tree 1 and Tree 3 are likely both 22. At this point, our table looks as follows:
If we guess that Tree 4 has a height of 11, we would need to make Tree 5 have a height of 22. In this case would equal which is not one more than a multiple of . So we instead guess that Tree 4 has a height of . Then we only need to try out heights of and for Tree 5. Using a height of for Tree 5 gives us which is more than a multiple of . Thus, the average height of the trees is meters .
~junaidmansuri
Solution 4
The problem states that all tree heights are integers. Therefore, we can deduce that the first and third trees have a height of meters. Trees four and five must have heights of either or or . Checking which ones match the answer choices, we find that the trees four and five have heights of and meters, respectively. Thus, the answer is .
-franzliszt
See also
2020 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.