Difference between revisions of "Cubic Equation"
Vincentwant (talk | contribs) |
Vincentwant (talk | contribs) |
||
Line 75: | Line 75: | ||
===If you're just asking for the formula for a monic cubic...=== | ===If you're just asking for the formula for a monic cubic...=== | ||
− | Here is the formula: | + | Here is the formula for <math>x^3 + ax^2 + bx + c</math>: |
<math>x = \sqrt[3]{\frac{-\left(\frac{2a^3 - 9ab + 27b}{27}\right) \pm \sqrt{\frac{3\left(\frac{2a^3 - 9ab + 27c}{9}\right)^2 - 4\left(\frac{3b - a^2}{3}\right)^3\left(\frac{2a^3 - 9ab + 27c}{27}\right)}{27}}}{2}} - \sqrt[3]{\frac{\left(\frac{2a^3 - 9ab + 27c}{27}\right) \pm \sqrt{\frac{3\left(\frac{2a^3 - 9ab + 27c}{9}\right)^2 - 4\left(\frac{3b - a^2}{3}\right)^3\left(\frac{2a^3 - 9ab + 27c}{27}\right)}{27}}}{2}} - \frac{a}{3}</math> | <math>x = \sqrt[3]{\frac{-\left(\frac{2a^3 - 9ab + 27b}{27}\right) \pm \sqrt{\frac{3\left(\frac{2a^3 - 9ab + 27c}{9}\right)^2 - 4\left(\frac{3b - a^2}{3}\right)^3\left(\frac{2a^3 - 9ab + 27c}{27}\right)}{27}}}{2}} - \sqrt[3]{\frac{\left(\frac{2a^3 - 9ab + 27c}{27}\right) \pm \sqrt{\frac{3\left(\frac{2a^3 - 9ab + 27c}{9}\right)^2 - 4\left(\frac{3b - a^2}{3}\right)^3\left(\frac{2a^3 - 9ab + 27c}{27}\right)}{27}}}{2}} - \frac{a}{3}</math> | ||
+ | |||
+ | ===If you're asking for the formula for a depressed monic cubic...=== | ||
+ | |||
+ | Here is the formula for <math>x^3 + ax + b</math>: | ||
+ | <math>x = \sqrt[3]{\frac{-b \pm \sqrt{\frac{27b^2 - 4a^3b}{27}}}{2}} - \sqrt[3]{\frac{b \pm \sqrt{\frac{27b^2 - 4a^3b}{27}}}{2}}</math> |
Revision as of 09:15, 10 December 2020
A cubic equation is an equation of the form:
.
A cubic equation has 3 roots, either all real OR one real, two complex.
Contents
[hide]Solving Cubic Equations
If you're too lazy to follow, look at subsection "TLDR" for each section.
Converting to a Depressed Equation
You start with the equation .
Divide both sides by a: .
Now we change the coefficient of to (e.g. change it to a depressed cubic). We do this by substituting or , giving:
.
is and is , so now we have .
TLDR?
The equation is where and .
Solving the Depressed Equation
Now here comes the smart part. Substitute .
The equation becomes . Simplification:
We want that last term to equal , so we can set . (We can't use , because then , which is not necessarily true.) Solving this equation gives us . If , then . We now have a system of equations:
.
We can solve this via the quadratic formula. After and are obtained, we have and .
TLDR?
where u and v are roots of the system .
The Cubic Formula
The cubic formula can be obtained by using the above method. These are the steps:
The depressed cubic is of the form .
and are the roots of the system of equations . We can solve this by substitution:
(We are still using p and q because they might get a little messy if we use p and q in terms of a, b, c, and d.)
(comes from )
(See? I told you it would be messy.) I'm not going to simplify all that squaring and cubing right now: maybe soon!
If you're just asking for the formula for a monic cubic...
Here is the formula for :
If you're asking for the formula for a depressed monic cubic...
Here is the formula for :