Difference between revisions of "2010 AMC 12B Problems/Problem 12"

(Created page with '== Problem 12 == For what value of <math>x</math> does <cmath>\log_{\sqrt{2}}\sqrt{x}+\log_{2}{x}+\log_{4}{x^2}+\log_{8}{x^3}+\log_{16}{x^4}=40?</cmath> <math>\textbf{(A)}\ 8 \…')
 
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Problem 12 ==
+
== Problem ==
 
For what value of <math>x</math> does
 
For what value of <math>x</math> does
  
Line 6: Line 6:
 
<math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math>
 
<math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math>
  
== Solution ==
+
== Solution 1==
Using logarithm rules:
+
<cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath>
\begin {align*}
+
 
\log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) & = 40 \
+
<cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath>
\frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} & = 40 \
+
 
\log_2x + \log_2x + \log_2x + \log_2x + \log_2x & = 40 \
+
<cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath>
5\log_2x & = 40 \
+
 
\log_2x & = 8 \
+
<cmath> 5\log_2x = 40 </cmath>
x & = 256 (D)
+
 
\end{align*}
+
<cmath> \log_2x = 8 </cmath>
 +
 
 +
<cmath> x = 256 \;\; (D) </cmath>
 +
 
 +
==Solution 2==
 +
Using the fact that <math>\log_{x^n}{y^n} = \log_{x}{y}</math>, we see that the equation becomes <math>\log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} = 40</math>. Thus, <math>5\log_{2}{x} = 40</math> and <math>\log_{2}{x} = 8</math>, so <math>x = 2^8 = 256</math>, or <math>\boxed{(D)}</math>.
 +
 
  
 
== See also ==
 
== See also ==
{{AMC12 box|year=2010|num-b=12|num-a=14|ab=B}}
+
{{AMC12 box|year=2010|num-b=11|num-a=13|ab=B}}
 +
{{MAA Notice}}

Latest revision as of 15:41, 15 February 2021

Problem

For what value of $x$ does

\[\log_{\sqrt{2}}\sqrt{x}+\log_{2}{x}+\log_{4}{x^2}+\log_{8}{x^3}+\log_{16}{x^4}=40?\]

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024$

Solution 1

\[\log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4)  = 40\]

\[\frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216}  = 40\]

\[\log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40\]

\[5\log_2x = 40\]

\[\log_2x = 8\]

\[x = 256 \;\; (D)\]

Solution 2

Using the fact that $\log_{x^n}{y^n} = \log_{x}{y}$, we see that the equation becomes $\log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} = 40$. Thus, $5\log_{2}{x} = 40$ and $\log_{2}{x} = 8$, so $x = 2^8 = 256$, or $\boxed{(D)}$.


See also

2010 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png