Difference between revisions of "2010 AMC 12B Problems/Problem 12"
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
For what value of <math>x</math> does | For what value of <math>x</math> does | ||
Line 6: | Line 6: | ||
<math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math> | <math>\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 256 \qquad \textbf{(E)}\ 1024</math> | ||
− | == Solution == | + | == Solution 1== |
<cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath> | <cmath> \log_{\sqrt{2}}\sqrt{x} + \log_2x + \log_4(x^2) + \log_8(x^3) + \log_{16}(x^4) = 40 </cmath> | ||
+ | |||
<cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | <cmath> \frac{1}{2} \frac{\log_2x}{\log_2\sqrt{2}} + \log_2x + \frac{2\log_2x}{\log_24} + \frac{3\log_2x}{\log_28} + \frac{4\log_2x}{\log_216} = 40 </cmath> | ||
+ | |||
<cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> | <cmath> \log_2x + \log_2x + \log_2x + \log_2x + \log_2x = 40 </cmath> | ||
+ | |||
<cmath> 5\log_2x = 40 </cmath> | <cmath> 5\log_2x = 40 </cmath> | ||
+ | |||
<cmath> \log_2x = 8 </cmath> | <cmath> \log_2x = 8 </cmath> | ||
− | <cmath> x = 256 (D) </cmath> | + | |
+ | <cmath> x = 256 \;\; (D) </cmath> | ||
+ | |||
+ | ==Solution 2== | ||
+ | Using the fact that <math>\log_{x^n}{y^n} = \log_{x}{y}</math>, we see that the equation becomes <math>\log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} + \log_{2}{x} = 40</math>. Thus, <math>5\log_{2}{x} = 40</math> and <math>\log_{2}{x} = 8</math>, so <math>x = 2^8 = 256</math>, or <math>\boxed{(D)}</math>. | ||
+ | |||
== See also == | == See also == | ||
− | {{AMC12 box|year=2010|num-b= | + | {{AMC12 box|year=2010|num-b=11|num-a=13|ab=B}} |
+ | {{MAA Notice}} |
Latest revision as of 15:41, 15 February 2021
Contents
[hide]Problem
For what value of does
Solution 1
Solution 2
Using the fact that , we see that the equation becomes . Thus, and , so , or .
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.