Difference between revisions of "2014 AIME II Problems/Problem 5"
Fclvbfm934 (talk | contribs) |
m (→Solution 2) |
||
Line 24: | Line 24: | ||
==Solution 2== | ==Solution 2== | ||
− | + | The roots of <math>p(x)</math> are <math>r</math>, <math>s</math>, and <math>-r-s</math> since they sum to <math>0</math> by Vieta's Formula (co-efficient of <math>x^2</math> term is <math>0</math>). | |
− | + | Similarly, the roots of <math>q(x)</math> are <math>r + 4</math>, <math>s - 3</math>, and <math>-r-s-1</math>, as they too sum to <math>0</math>. | |
− | We now move to the other two equations. We see that we can cancel a negative from both sides to get < | + | Then: |
+ | |||
+ | <math>a = rs+r(-r-s)+s(-r-s) = rs-(r+s)^2</math> and <math>-b = rs(-r-s)</math> from <math>p(x)</math> and | ||
+ | |||
+ | <math>a=(r+4)(s-3)+(r+4)(-r-s-1)+(s-3)(-r-s-1) = (r+4)(s-3)-(r+s+1)^2</math> and <math>-(b+240)=(r+4)(s-3)(-r-s-1)</math> from <math>q(x)</math>. | ||
+ | |||
+ | From these equations, we can write that | ||
+ | <cmath>rs-(r+s)^2 = (r+4)(s-3)-(r+s+1)^2 = a</cmath> | ||
+ | and simplifying gives | ||
+ | <cmath>2s-5r-13=0 \Rightarrow s = \frac{5r+13}{2}.</cmath> | ||
+ | |||
+ | |||
+ | |||
+ | We now move to the other two equations regarding the product of the roots. We see that we can cancel a negative from both sides to get | ||
+ | <cmath>rs(r+s) = b</cmath> and | ||
+ | <cmath>(r+4)(s-3)(r+s+1)=b + 240.</cmath> Subtracting the first equation from the second equation yields <math>(r+4)(s-3)(r+s+1) - rs(r+s) = 240</math>. | ||
+ | |||
+ | Expanding and simplifying, substituting <math>s = \frac{5r+13}{2}</math> and simplifying some more yields the simple quadratic <math>r^2 + 4r - 5 = 0</math>, so <math>r = -5, 1</math>. Then <math>s = -6, 9</math>. | ||
Finally, we substitute back in to get <math>b = (-5)(-6)(-5-6) = -330</math> or <math>b = (1)(9)(1 + 9) = 90</math>. Then the answer is <math>|-330|+|90| = \boxed{420}</math>. | Finally, we substitute back in to get <math>b = (-5)(-6)(-5-6) = -330</math> or <math>b = (1)(9)(1 + 9) = 90</math>. Then the answer is <math>|-330|+|90| = \boxed{420}</math>. |
Revision as of 18:19, 20 February 2021
Problem
Real numbers and are roots of , and and are roots of . Find the sum of all possible values of .
Solution 1
Let , , and be the roots of (per Vieta's). Then and similarly for . Also,
Set up a similar equation for :
Simplifying and adding the equations gives
Now, let's deal with the terms. Plugging the roots , , and into yields a long polynomial, and plugging the roots , , and into yields another long polynomial. Equating the coefficients of x in both polynomials: which eventually simplifies to
Substitution into (*) should give and , corresponding to and , and , for an answer of .
Solution 2
The roots of are , , and since they sum to by Vieta's Formula (co-efficient of term is ).
Similarly, the roots of are , , and , as they too sum to .
Then:
and from and
and from .
From these equations, we can write that and simplifying gives
We now move to the other two equations regarding the product of the roots. We see that we can cancel a negative from both sides to get and Subtracting the first equation from the second equation yields .
Expanding and simplifying, substituting and simplifying some more yields the simple quadratic , so . Then .
Finally, we substitute back in to get or . Then the answer is .
Solution 3
By Vieta's, we know that the sum of roots of is . Therefore, the roots of are . By similar reasoning, the roots of are . Thus, and .
Since and have the same coefficient for , we can go ahead and match those up to get
At this point, we can go ahead and compare the constant term in and . Doing so is certainly valid, but we can actually do this another way. Notice that . Therefore, . If we plug that into our expression, we get that This tells us that or . Since is the product of the roots, we have that the two possibilities are and . Adding the absolute values of these gives us .
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.