Difference between revisions of "2007 AMC 10A Problems/Problem 20"

m (Solution 2)
Line 4: Line 4:
 
<math>\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212</math>
 
<math>\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212</math>
  
__NOTOC__
+
== Solution 1 (Generalized) ==
== Solutions ==
+
Notice that for all real numbers <math>k,</math> we have <math>a^{2k} + a^{-2k} + 2 = \left(a^{k} + a^{-k}\right)^2,</math> from which <cmath>a^{2k} + a^{-2k} = \left(a^{k} + a^{-k}\right)^2-2.</cmath> We apply this result twice to get the answer:
=== Solution 1 ===
+
<cmath>\begin{align*}
Notice that <math>(a^{k} + a^{-k})^2 = a^{2k} + a^{-2k} + 2</math>. Thus <math>a^4 + a^{-4} = (a^2 + a^{-2})^2 - 2 = [(a + a^{-1})^2 - 2]^2 - 2 = 194\ \mathrm{(D)}</math>.
+
a^4 + a^{-4} &= \left(a^2 + a^{-2}\right)^2 - 2 \
 +
&= \left[\left(a + a^{-1}\right)^2 - 2\right]^2 - 2 \
 +
&= \boxed{\text{(D)}\ 194}.</cmath>
 +
~Azjps (Fundamental Logic)
  
=== Solution 2 ===
+
~MRENTHUSIASM (Reconstruction)
 +
 
 +
== Solution 2 ==
 
Notice that <math>(a^{4} + a^{-4}) = (a^{2} + a^{-2})^{2} - 2</math>. Since D is the only option 2 less than a perfect square, that is correct.
 
Notice that <math>(a^{4} + a^{-4}) = (a^{2} + a^{-2})^{2} - 2</math>. Since D is the only option 2 less than a perfect square, that is correct.
  
 
PS: Because this is a multiple choice test, this works.
 
PS: Because this is a multiple choice test, this works.
  
=== Solution 3 ===
+
== Solution 3 ==
 
<math>4a = a^2 + 1</math>. We apply the [[quadratic formula]] to get <math>a = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}</math>.  
 
<math>4a = a^2 + 1</math>. We apply the [[quadratic formula]] to get <math>a = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}</math>.  
  
 
Thus <math>a^4 + a^{-4} = (2+\sqrt{3})^4 + \frac{1}{(2+\sqrt{3})^4} = (2+\sqrt{3})^4 + (2-\sqrt{3})^4</math> (so it doesn't matter which root of <math>a</math> we use). Using the [[binomial theorem]] we can expand this out and collect terms to get <math>194</math>.
 
Thus <math>a^4 + a^{-4} = (2+\sqrt{3})^4 + \frac{1}{(2+\sqrt{3})^4} = (2+\sqrt{3})^4 + (2-\sqrt{3})^4</math> (so it doesn't matter which root of <math>a</math> we use). Using the [[binomial theorem]] we can expand this out and collect terms to get <math>194</math>.
  
=== Solution 4 ===
+
== Solution 4 ==
 
(similar to Solution 1)
 
(similar to Solution 1)
 
We know that <math>a+\frac{1}{a}=4</math>. We can square both sides to get <math>a^2+\frac{1}{a^2}+2=16</math>, so <math>a^2+\frac{1}{a^2}=14</math>. Squaring both sides again gives <math>a^4+\frac{1}{a^4}+2=14^2=196</math>, so <math>a^4+\frac{1}{a^4}=\boxed{194}</math>.
 
We know that <math>a+\frac{1}{a}=4</math>. We can square both sides to get <math>a^2+\frac{1}{a^2}+2=16</math>, so <math>a^2+\frac{1}{a^2}=14</math>. Squaring both sides again gives <math>a^4+\frac{1}{a^4}+2=14^2=196</math>, so <math>a^4+\frac{1}{a^4}=\boxed{194}</math>.
  
=== Solution 5 ===
+
== Solution 5 ==
 
We let <math>a</math> and <math>1/a</math> be roots of a certain quadratic. Specifically <math>x^2-4x+1=0</math>. We use [[Newton's Sums]] given the coefficients to find <math>S_4</math>.
 
We let <math>a</math> and <math>1/a</math> be roots of a certain quadratic. Specifically <math>x^2-4x+1=0</math>. We use [[Newton's Sums]] given the coefficients to find <math>S_4</math>.
 
<math>S_4=\boxed{194}</math>
 
<math>S_4=\boxed{194}</math>
  
=== Solution 6 ===
+
== Solution 6 ==
 
Let <math>a</math> = <math>\cos(x)</math> + <math>i\sin(x)</math>. Then <math>a + a^{-1} = 2\cos(x)</math> so <math>\cos(x) = 2</math>. Then by [[De Moivre's Theorem]], <math>a^4 + a^{-4}</math> = <math>2\cos(4x)</math> and solving gets 194.
 
Let <math>a</math> = <math>\cos(x)</math> + <math>i\sin(x)</math>. Then <math>a + a^{-1} = 2\cos(x)</math> so <math>\cos(x) = 2</math>. Then by [[De Moivre's Theorem]], <math>a^4 + a^{-4}</math> = <math>2\cos(4x)</math> and solving gets 194.
  

Revision as of 22:32, 24 June 2021

Problem

Suppose that the number $a$ satisfies the equation $4 = a + a^{ - 1}$. What is the value of $a^{4} + a^{ - 4}$?

$\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212$

Solution 1 (Generalized)

Notice that for all real numbers $k,$ we have $a^{2k} + a^{-2k} + 2 = \left(a^{k} + a^{-k}\right)^2,$ from which \[a^{2k} + a^{-2k} = \left(a^{k} + a^{-k}\right)^2-2.\] We apply this result twice to get the answer:

\begin{align*}
a^4 + a^{-4} &= \left(a^2 + a^{-2}\right)^2 - 2 \\
&= \left[\left(a + a^{-1}\right)^2 - 2\right]^2 - 2 \\
&= \boxed{\text{(D)}\ 194}. (Error compiling LaTeX. Unknown error_msg)

~Azjps (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 2

Notice that $(a^{4} + a^{-4}) = (a^{2} + a^{-2})^{2} - 2$. Since D is the only option 2 less than a perfect square, that is correct.

PS: Because this is a multiple choice test, this works.

Solution 3

$4a = a^2 + 1$. We apply the quadratic formula to get $a = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}$.

Thus $a^4 + a^{-4} = (2+\sqrt{3})^4 + \frac{1}{(2+\sqrt{3})^4} = (2+\sqrt{3})^4 + (2-\sqrt{3})^4$ (so it doesn't matter which root of $a$ we use). Using the binomial theorem we can expand this out and collect terms to get $194$.

Solution 4

(similar to Solution 1) We know that $a+\frac{1}{a}=4$. We can square both sides to get $a^2+\frac{1}{a^2}+2=16$, so $a^2+\frac{1}{a^2}=14$. Squaring both sides again gives $a^4+\frac{1}{a^4}+2=14^2=196$, so $a^4+\frac{1}{a^4}=\boxed{194}$.

Solution 5

We let $a$ and $1/a$ be roots of a certain quadratic. Specifically $x^2-4x+1=0$. We use Newton's Sums given the coefficients to find $S_4$. $S_4=\boxed{194}$

Solution 6

Let $a$ = $\cos(x)$ + $i\sin(x)$. Then $a + a^{-1} = 2\cos(x)$ so $\cos(x) = 2$. Then by De Moivre's Theorem, $a^4 + a^{-4}$ = $2\cos(4x)$ and solving gets 194.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png