Difference between revisions of "2017 AMC 10A Problems/Problem 22"
m (→Video Solution) |
(→Solution) |
||
Line 15: | Line 15: | ||
label("O", (4, 3.4)); | label("O", (4, 3.4)); | ||
</asy> | </asy> | ||
− | Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | + | Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - 2 \cdot\frac 12 r \cdot r \cdot \frac{\sqrt{3}}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> |
==Video Solution== | ==Video Solution== |
Revision as of 01:59, 24 July 2021
Contents
[hide]Problem
Sides and of equilateral triangle are tangent to a circle at points and respectively. What fraction of the area of lies outside the circle?
Solution
Let the radius of the circle be , and let its center be . Since and are tangent to circle , then , so . Therefore, since and are equal to , then (pick your favorite method) . The area of the equilateral triangle is , and the area of the sector we are subtracting from it is . The area outside of the circle is . Therefore, the answer is
Video Solution
https://www.youtube.com/watch?v=GnJDNtjd57k&feature=youtu.be
https://youtu.be/ADDAOhNAsjQ -Video Solution by Richard Rusczyk
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.