Difference between revisions of "1978 AHSME Problems/Problem 20"

(Reformatted question. Source: https://files.eric.ed.gov/fulltext/ED239856.pdf)
Line 1: Line 1:
 
== Problem 20 ==
 
== Problem 20 ==
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0</math>, then <math>x</math> equals
+
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0,</math> then <math>x</math> equals
  
 
<math>\textbf{(A) }-1\qquad
 
<math>\textbf{(A) }-1\qquad
Line 8: Line 8:
 
\textbf{(E) }-8    </math>  
 
\textbf{(E) }-8    </math>  
  
==Solution==
+
==Solution 2==
 +
We equate the first two expressions (More generally, we can equate any two expressions): <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}.</cmath>
 +
We add <math>1</math> to both sides, then rearrange:
 +
<cmath>\begin{align*}
 +
\frac{a+b}{c} &= \frac{a+c}{b} \
 +
ab+b^2 &= ac+c^2 \
 +
\bigl(ab-ac\bigr)+\bigl(b^2-c^2\bigr) &= 0 \
 +
a(b-c)+(b+c)(b-c) &= 0 \
 +
(a+b+c)(b-c) &= 0,
 +
\end{align*}</cmath>
 +
from which <math>a+b+c=0</math> or <math>b=c.</math>
  
Take the first two expressions (you can actually take any two expressions):  <math>\frac{a+b-c}{c}=\frac{a-b+c}{b}</math>.
+
* If <math>a+b+c=0,</math> then <math>x=\frac{(-c)(-a)(-b)}{abc}=-1.</math>
  
<math>\frac{a+b}{c}=\frac{a+c}{b}</math>
+
* If <math>b=c,</math> then <math>x=\frac{(a+b)(b+c)(c+a)}{abc}</math>
  
<math>ab+b^2=ac+c^2</math>
+
~Pega969 (Solution)
  
<math>a(b-c)+b^2-c^2=0</math>
+
~MRENTHUSIASM (Revision)
 
 
<math>(a+b+c)(b-c)=0</math>
 
 
 
<math>\Rightarrow a+b+c=0</math> OR <math>b=c</math>
 
 
 
The first solution gives us <math>x=\frac{(-c)(-a)(-b)}{abc}=-1</math>.
 
  
 
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
 
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
  
 
Therefore, <math>x=-1\Rightarrow\boxed{A}</math>.
 
Therefore, <math>x=-1\Rightarrow\boxed{A}</math>.
 +
 +
<b>EDITING IN PROGRESS</b>
  
 
== See also ==
 
== See also ==

Revision as of 21:03, 4 September 2021

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }-1\qquad \textbf{(B) }-2\qquad \textbf{(C) }-4\qquad \textbf{(D) }-6\qquad  \textbf{(E) }-8$

Solution 2

We equate the first two expressions (More generally, we can equate any two expressions): \[\frac{a+b-c}{c}=\frac{a-b+c}{b}.\] We add $1$ to both sides, then rearrange: \begin{align*} \frac{a+b}{c} &= \frac{a+c}{b} \\ ab+b^2 &= ac+c^2 \\ \bigl(ab-ac\bigr)+\bigl(b^2-c^2\bigr) &= 0 \\ a(b-c)+(b+c)(b-c) &= 0 \\ (a+b+c)(b-c) &= 0, \end{align*} from which $a+b+c=0$ or $b=c.$

  • If $a+b+c=0,$ then $x=\frac{(-c)(-a)(-b)}{abc}=-1.$
  • If $b=c,$ then $x=\frac{(a+b)(b+c)(c+a)}{abc}$

~Pega969 (Solution)

~MRENTHUSIASM (Revision)

The second solution gives us $a=b=c$, and $x=\frac{8a^3}{a^3}=8$, which is not negative, so this solution doesn't work.

Therefore, $x=-1\Rightarrow\boxed{A}$.

EDITING IN PROGRESS

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png