Difference between revisions of "1976 AHSME Problems/Problem 30"

m
(I highly suspected that someone published copyrighted materials from the "AMC 12 Problem Series" class. So, I alter a little wording while keeping the logic the same. Also, I improved the display of equations and tables.)
Line 13: Line 13:
  
 
== Solution ==
 
== Solution ==
The first equation suggests the substitution <math>a = x</math>, <math>b = 2y</math>, and <math>c = 4z</math>. Then <math>x = a</math>, <math>y = b/2</math>, and <math>z = c/4</math>. Substituting into the given equations, we get
+
The first equation suggests the substitutions <math>a=x,b=2y,</math> and <math>c=4z.</math> So, we get <math>x=a,y=b/2,</math> and <math>z=c/4,</math> respectively. We rewrite the given equations in terms of <math>a,b,</math> and <math>c:</math>
 
+
<cmath>\begin{align*}
a + b + c = 12
+
a + b + c &= 12, \
 
+
\frac{ab}{2} + \frac{bc}{2} + \frac{ac}{2} &= 22, \
ab + ac + bc = 44
+
\frac{abc}{8} &= 6.
 
+
\end{align*}</cmath>
abc = 48.
+
We clear fractions in these equations:
 
+
<cmath>\begin{align*}
Then by Vieta's formulas, <math>a</math>, <math>b</math>, and <math>c</math> are the roots of the equation
+
a + b + c &= 12, \
<cmath>x^3 - 12x^2 + 44x - 48 = 0,</cmath>
+
ab + ac + bc &= 44, \
 +
abc &= 48.
 +
\end{align*}</cmath>
 +
By Vieta's Formulas, note that <math>a,b,</math> and <math>c</math> are the roots of the equation <cmath>x^3 - 12x^2 + 44x - 48 = 0,</cmath>
 
which factors as
 
which factors as
 
<cmath>(x - 2)(x - 4)(x - 6) = 0.</cmath>
 
<cmath>(x - 2)(x - 4)(x - 6) = 0.</cmath>
Hence, <math>a</math>, <math>b</math>, and <math>c</math> are equal to 2, 4, and 6 in some order.
+
It follows that <math>\{a,b,c\}=\{2,4,6\}.</math> Since the substitution <math>(x,y,z)=(a,b/2,c/4)</math> is not symmetric with respect to <math>x,y,</math> and <math>z,</math> we conclude that different ordered triples <math>(a,b,c)</math> generate different ordered triples <math>(x,y,z),</math> as shown below:
 
+
<cmath>\begin{array}{c|c|c||c|c|c}
Since our substitution was not symmetric, each possible solution <math>(a,b,c)</math> leads to a different solution <math>(x,y,z)</math>, as follows:
+
& & & & & \ [-2.5ex]
 
+
\boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} & \boldsymbol{x} & \boldsymbol{y} & \boldsymbol{z} \ [0.5ex]
 
+
\hline
a | b | c | x | y | z
+
& & & & & \ [-2ex]
-----------------------
+
2 & 4 & 6 & 2 & 2 & 3/2 \
2 | 4 | 6 | 2 | 2 | 3/2
+
2 & 6 & 4 & 2 & 3 & 1 \
 
+
4 & 2 & 6 & 4 & 1 & 3/2 \
2 | 6 | 4 | 2 | 3 | 1
+
4 & 6 & 2 & 4 & 3 & 1/2 \
 
+
6 & 2 & 4 & 6 & 1 & 1 \
4 | 2 | 6 | 4 | 1 | 3/2
+
6 & 4 & 2 & 6 & 2 & 1/2
 
+
\end{array}</cmath>
4 | 6 | 2 | 4 | 3 | 1/2
+
So, there are <math>\boxed{\textbf{(E) }6}</math> such ordered triples <math>(x,y,z).</math>
 
 
6 | 2 | 4 | 6 | 1 | 1
 
 
 
6 | 4 | 2 | 6 | 2 | 1/2
 
 
 
  
Hence, there are <math>\boxed{6}</math> solutions in <math>(x,y,z)</math>. The answer is (E).
+
~MRENTHUSIASM (credit given to AoPS)
  
 
== See also ==
 
== See also ==
 
{{AHSME box|year=1976|n=I|num-b=29|after=Last Problem}}
 
{{AHSME box|year=1976|n=I|num-b=29|after=Last Problem}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:02, 6 September 2021

Problem 30

How many distinct ordered triples $(x,y,z)$ satisfy the following equations? \begin{align*} x + 2y + 4z &= 12 \\ xy + 4yz + 2xz &= 22 \\ xyz &= 6 \end{align*} $\textbf{(A) }\text{none}\qquad \textbf{(B) }1\qquad \textbf{(C) }2\qquad \textbf{(D) }4\qquad \textbf{(E) }6$

Solution

The first equation suggests the substitutions $a=x,b=2y,$ and $c=4z.$ So, we get $x=a,y=b/2,$ and $z=c/4,$ respectively. We rewrite the given equations in terms of $a,b,$ and $c:$ \begin{align*} a + b + c &= 12, \\ \frac{ab}{2} + \frac{bc}{2} + \frac{ac}{2} &= 22, \\ \frac{abc}{8} &= 6. \end{align*} We clear fractions in these equations: \begin{align*} a + b + c &= 12, \\ ab + ac + bc &= 44, \\ abc &= 48. \end{align*} By Vieta's Formulas, note that $a,b,$ and $c$ are the roots of the equation \[x^3 - 12x^2 + 44x - 48 = 0,\] which factors as \[(x - 2)(x - 4)(x - 6) = 0.\] It follows that $\{a,b,c\}=\{2,4,6\}.$ Since the substitution $(x,y,z)=(a,b/2,c/4)$ is not symmetric with respect to $x,y,$ and $z,$ we conclude that different ordered triples $(a,b,c)$ generate different ordered triples $(x,y,z),$ as shown below: \[\begin{array}{c|c|c||c|c|c} & & & & & \\ [-2.5ex] \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{c} & \boldsymbol{x} & \boldsymbol{y} & \boldsymbol{z} \\ [0.5ex] \hline & & & & & \\ [-2ex] 2 & 4 & 6 & 2 & 2 & 3/2 \\ 2 & 6 & 4 & 2 & 3 & 1 \\ 4 & 2 & 6 & 4 & 1 & 3/2 \\ 4 & 6 & 2 & 4 & 3 & 1/2 \\ 6 & 2 & 4 & 6 & 1 & 1 \\ 6 & 4 & 2 & 6 & 2 & 1/2 \end{array}\] So, there are $\boxed{\textbf{(E) }6}$ such ordered triples $(x,y,z).$

~MRENTHUSIASM (credit given to AoPS)

See also

1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png