Difference between revisions of "2004 AMC 12A Problems/Problem 17"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) m |
||
(3 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
What is the value of <math>f(2^{100})</math>? | What is the value of <math>f(2^{100})</math>? | ||
− | <math>\ | + | <math>\textbf {(A)}\ 1 \qquad \textbf {(B)}\ 2^{99} \qquad \textbf {(C)}\ 2^{100} \qquad \textbf {(D)}\ 2^{4950} \qquad \textbf {(E)}\ 2^{9999}</math> |
− | == Solution 1 ( | + | == Solution 1 (Forward) == |
From (ii), note that | From (ii), note that | ||
<cmath>\begin{alignat*}{8} | <cmath>\begin{alignat*}{8} | ||
Line 26: | Line 26: | ||
Therefore, the answer is | Therefore, the answer is | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | 2^{100}&=2^{99+98+97+\cdots+3+2+1} \\ | + | f\left(2^{100}\right)&=2^{99+98+97+\cdots+3+2+1} \\ |
&=2^{99\cdot100/2} \\ | &=2^{99\cdot100/2} \\ | ||
− | &= \boxed{\ | + | &= \boxed{\textbf {(D)}\ 2^{4950}}. |
\end{align*}</cmath> | \end{align*}</cmath> | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | == Solution 2 ( | + | == Solution 2 (Backward) == |
− | + | Applying (ii) repeatedly, we have | |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
f\left(2^{100}\right) &= 2^{99} \cdot f\left(2^{99}\right) \\ | f\left(2^{100}\right) &= 2^{99} \cdot f\left(2^{99}\right) \\ | ||
Line 43: | Line 43: | ||
&=2^{99 + 98 + 97 + \cdots + 3 + 2 + 1} \\ | &=2^{99 + 98 + 97 + \cdots + 3 + 2 + 1} \\ | ||
&=2^{99\cdot100/2} \\ | &=2^{99\cdot100/2} \\ | ||
− | &= \boxed{\ | + | &= \boxed{\textbf {(D)}\ 2^{4950}}. |
\end{align*}</cmath> | \end{align*}</cmath> | ||
~Azjps (Fundamental Logic) | ~Azjps (Fundamental Logic) |
Latest revision as of 07:14, 6 September 2021
- The following problem is from both the 2004 AMC 12A #17 and 2004 AMC 10A #24, so both problems redirect to this page.
Problem
Let be a function with the following properties:
(i) , and
(ii) for any positive integer .
What is the value of ?
Solution 1 (Forward)
From (ii), note that and so on.
In general, we have for any positive integer
Therefore, the answer is ~MRENTHUSIASM
Solution 2 (Backward)
Applying (ii) repeatedly, we have ~Azjps (Fundamental Logic)
~MRENTHUSIASM (Reconstruction)
Video Solution
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.