Difference between revisions of "2018 AMC 12B Problems/Problem 12"
Rockmanex3 (talk | contribs) (→See Also) |
MRENTHUSIASM (talk | contribs) (Changed the variable definition so it is more manageable. Also, used the ordered list command for the three inequalities.) |
||
Line 3: | Line 3: | ||
Side <math>\overline{AB}</math> of <math>\triangle ABC</math> has length <math>10</math>. The bisector of angle <math>A</math> meets <math>\overline{BC}</math> at <math>D</math>, and <math>CD = 3</math>. The set of all possible values of <math>AC</math> is an open interval <math>(m,n)</math>. What is <math>m+n</math>? | Side <math>\overline{AB}</math> of <math>\triangle ABC</math> has length <math>10</math>. The bisector of angle <math>A</math> meets <math>\overline{BC}</math> at <math>D</math>, and <math>CD = 3</math>. The set of all possible values of <math>AC</math> is an open interval <math>(m,n)</math>. What is <math>m+n</math>? | ||
− | < | + | <math>\textbf{(A) }16 \qquad |
\textbf{(B) }17 \qquad | \textbf{(B) }17 \qquad | ||
\textbf{(C) }18 \qquad | \textbf{(C) }18 \qquad | ||
\textbf{(D) }19 \qquad | \textbf{(D) }19 \qquad | ||
− | \textbf{(E) }20 \qquad</ | + | \textbf{(E) }20 \qquad</math> |
== Solution == | == Solution == | ||
+ | Let <math>AC=x.</math> By Angle Bisector Theorem, we have <math>\frac{AB}{AC}=\frac{BD}{CD},</math> from which <math>BD=CD\cdot\frac{AB}{AC}=\frac{30}{x}.</math> | ||
− | + | Recall that <math>x>0.</math> We apply the Triangle Inequality to <math>\triangle ABC:</math> | |
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li><math>AC+BC>AB</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | x+\left(\frac{30}{x}+3\right)&>10 \\ | ||
+ | x-7+\frac{30}{x}&>0 \\ | ||
+ | x^2-7x+30&>0 \\ | ||
+ | \left(x-\frac72\right)^2+\frac{71}{4}&>0 \\ | ||
+ | x&>0. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | <li><math>AB+BC>AC</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | 10+\left(\frac{30}{x}+3\right)&>x \\ | ||
+ | x-13-\frac{30}{x}&<0 \\ | ||
+ | x^2-13x-30&<0 \\ | ||
+ | (x+2)(x-15)&<0 \\ | ||
+ | 0<x&<15. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | <li><math>AB+AC>BC</math> <p> | ||
+ | We get | ||
+ | <cmath>\begin{align*} | ||
+ | 10+x&>\frac{30}{x}+3 \\ | ||
+ | x+7-\frac{30}{x}&>0 \\ | ||
+ | x^2+7x-30&>0 \\ | ||
+ | (x+10)(x-3)&>0 \\ | ||
+ | x&>3. | ||
+ | \end{align*}</cmath> | ||
+ | </li><p> | ||
+ | </ol> | ||
+ | Taking the intersection of the solutions gives <cmath>(m,n)=(0,\infty)\cap(0,15)\cap(3,\infty)=(3,15),</cmath> so the answer is <math>m+n=\boxed{\textbf{(C) }18}.</math> | ||
− | + | ~MRENTHUSIASM | |
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 04:09, 21 September 2021
Problem
Side of has length . The bisector of angle meets at , and . The set of all possible values of is an open interval . What is ?
Solution
Let By Angle Bisector Theorem, we have from which
Recall that We apply the Triangle Inequality to
-
We get
-
We get
-
We get
Taking the intersection of the solutions gives so the answer is
~MRENTHUSIASM
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.