Difference between revisions of "2018 AMC 12B Problems/Problem 15"

(Prioritized solutions based on elegance and clarity. Let me know if you disagree.)
(Rewrote Sol 1 a little so the setup is more clear. Will use the same template for Sol 2.)
Line 5: Line 5:
  
 
== Solution 1 ==
 
== Solution 1 ==
 +
Let <math>\underline{ABC}</math> be one such odd positive <math>3</math>-digit integer with hundreds digit <math>A,</math> tens digit <math>B,</math> and ones digit <math>C.</math> Since <math>\underline{ABC}\equiv0\pmod3,</math> we need <math>A+B+C\equiv0\pmod3.</math>
  
There are <math>4</math> choices for the last digit (<math>1, 5, 7, 9</math>), and <math>8</math> choices for the first digit (excluding <math>0</math> and <math>3</math>). We know what the second digit modulo <math>3</math> is, so there are <math>3</math> choices for it (pick from one of the sets <math>\{0, 6, 9\},\{1, 4, 7\}, \{2, 5, 8\}</math>). The answer is <math>4\cdot 8 \cdot 3 = \boxed{\textbf{(A) } 96}.</math>  
+
As <math>A\in\{1,2,4,5,6,7,8,9\}</math> and <math>C\in\{1,5,7,9\},</math> there are <math>8</math> possibilities for <math>A</math> and <math>4</math> possibilities for <math>C.</math> Note that each ordered pair <math>(A,C)</math> determines the value of <math>B</math> modulo <math>3,</math> so <math>B</math> can be any element in one of the sets <math>\{0,6,9\},\{1,4,7\},</math> or <math>\{2,5,8\}.</math> We conclude that there are always <math>3</math> possibilities for <math>B.</math>
  
~Plasma_Vortex
+
By the Multiplication Principle, the answer is <math>8\cdot4\cdot3=\boxed{\textbf{(A) } 96}.</math>
 +
 
 +
~Plasma_Vortex ~MRENTHUSIASM
  
 
== Solution 2 ==
 
== Solution 2 ==
 +
Let <math>\underline{ABC}</math> be one such odd positive <math>3</math>-digit integer with hundreds digit <math>A,</math> tens digit <math>B,</math> and ones digit <math>C.</math> Since <math>\underline{ABC}\equiv0\pmod3,</math> we need <math>A+B+C\equiv0\pmod3.</math>
  
 
== Solution 3 ==
 
== Solution 3 ==

Revision as of 04:15, 28 September 2021

Problem

How many odd positive $3$-digit integers are divisible by $3$ but do not contain the digit $3$?

$\textbf{(A) } 96 \qquad \textbf{(B) } 97 \qquad \textbf{(C) } 98 \qquad \textbf{(D) } 102 \qquad \textbf{(E) } 120$

Solution 1

Let $\underline{ABC}$ be one such odd positive $3$-digit integer with hundreds digit $A,$ tens digit $B,$ and ones digit $C.$ Since $\underline{ABC}\equiv0\pmod3,$ we need $A+B+C\equiv0\pmod3.$

As $A\in\{1,2,4,5,6,7,8,9\}$ and $C\in\{1,5,7,9\},$ there are $8$ possibilities for $A$ and $4$ possibilities for $C.$ Note that each ordered pair $(A,C)$ determines the value of $B$ modulo $3,$ so $B$ can be any element in one of the sets $\{0,6,9\},\{1,4,7\},$ or $\{2,5,8\}.$ We conclude that there are always $3$ possibilities for $B.$

By the Multiplication Principle, the answer is $8\cdot4\cdot3=\boxed{\textbf{(A) } 96}.$

~Plasma_Vortex ~MRENTHUSIASM

Solution 2

Let $\underline{ABC}$ be one such odd positive $3$-digit integer with hundreds digit $A,$ tens digit $B,$ and ones digit $C.$ Since $\underline{ABC}\equiv0\pmod3,$ we need $A+B+C\equiv0\pmod3.$

Solution 3

Analyze that the three-digit integers divisible by $3$ start from $102.$ In the $200$'s, it starts from $201.$ In the $300$'s, it starts from $300.$ We see that the units digits is $0, 1,$ and $2.$

Write out the $1$- and $2$-digit multiples of $3$ starting from $0, 1,$ and $2.$ Count up the ones that meet the conditions. Then, add up and multiply by $3,$ since there are three sets of three from $1$ to $9.$ Then, subtract the amount that started from $0,$ since the $300$'s ll contain the digit $3.$

We get \[3(12+12+12)-12=\boxed{\textbf{(A) } 96}.\]

Solution 4

Consider the number of $2$-digit numbers that do not contain the digit $3,$ which is $90-18=72.$ For any of these $2$-digit numbers, we can append $1,5,7,$ or $9$ to reach a desirable $3$-digit number. However, we have $7 \equiv 1\pmod{3},$ and thus we need to count any $2$-digit number $\equiv 2\pmod{3}$ twice. There are $(98-11)/3+1=30$ total such numbers that have remainder $2,$ but $6$ of them $(23,32,35,38,53,83)$ contain $3,$ so the number we want is $30-6=24.$ Therefore, the final answer is $72+24= \boxed{\textbf{(A) } 96}.$

Solution 5

We need to take care of all restrictions. Ranging from $101$ to $999,$ there are $450$ odd $3$-digit numbers. Exactly $\frac{1}{3}$ of these numbers are divisible by $3,$ which is $450\times\frac{1}{3}=150.$ Of these $150$ numbers, $\frac{4}{5}$ $\textbf{do not}$ have $3$ in their ones (units) digit, $\frac{9}{10}$ $\textbf{do not}$ have $3$ in their tens digit, and $\frac{8}{9}$ $\textbf{do not}$ have $3$ in their hundreds digit. Thus, the total number of $3$-digit integers is \[900\cdot\frac{1}{2}\cdot\frac{1}{3}\cdot\frac{4}{5}\cdot\frac{9}{10}\cdot\frac{8}{9}=\boxed{\textbf{(A) } 96}.\]

~mathpro12345

Video Solution

https://youtu.be/mgEZOXgIZXs?t=448

~ pi_is_3.14

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png