Difference between revisions of "2021 Fall AMC 10A Problems/Problem 12"
MRENTHUSIASM (talk | contribs) m (→Problem) |
MRENTHUSIASM (talk | contribs) (Corrected the sign error, and reformatted. Made Sol 1 more concise.) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | The base-nine representation of the number <math>N</math> is <math>27,006,000,052_{\text{nine}}.</math> What is the remainder when <math>N</math> is divided by <math>5?</math> | + | The base-nine representation of the number <math>N</math> is <math>27{,}006{,}000{,}052_{\text{nine}}.</math> What is the remainder when <math>N</math> is divided by <math>5?</math> |
<math>\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4</math> | <math>\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4</math> | ||
− | ==Solution== | + | ==Solution 1== |
− | + | Recall that <math>9\equiv-1\pmod{5}.</math> We have | |
− | + | <cmath>\begin{align*} | |
− | <math> | + | 27{,}006{,}000{,}052_9 &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \ |
− | + | &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \ | |
− | < | + | &= 2-7+6-5+2 \ |
− | + | &= -2 \ | |
− | + | &\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}. | |
− | + | \end{align*}</cmath> | |
− | + | -Aidensharp ~MRENTHUSIASM | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | -Aidensharp | ||
==Solution 2== | ==Solution 2== | ||
Line 28: | Line 22: | ||
Simplifying, <math>-2 \mod 5 \implies 3 \mod 5.</math> So, the answer is <math>\boxed{3}.</math> | Simplifying, <math>-2 \mod 5 \implies 3 \mod 5.</math> So, the answer is <math>\boxed{3}.</math> | ||
− | - kante314 | + | -kante314 |
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2021 Fall|ab=A|num-b=11|num-a=13}} | ||
+ | {{MAA Notice}} |
Revision as of 20:26, 22 November 2021
Contents
[hide]Problem
The base-nine representation of the number is What is the remainder when is divided by
Solution 1
Recall that We have -Aidensharp ~MRENTHUSIASM
Solution 2
We convert this into base so Notice that Simplifying, So, the answer is
-kante314
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.