Difference between revisions of "2021 Fall AMC 10A Problems/Problem 12"
MRENTHUSIASM (talk | contribs) (Corrected the sign error, and reformatted. Made Sol 1 more concise.) |
MRENTHUSIASM (talk | contribs) m (The solutions in this page are very similar. So, I combined them and give credits to everyone ...) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4</math> | <math>\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4</math> | ||
− | ==Solution | + | ==Solution== |
− | Recall that <math>9\equiv-1\pmod{5}.</math> We | + | Recall that <math>9\equiv-1\pmod{5}.</math> We expand <math>N</math> by the definition of bases: |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | 27{,}006{,}000{,}052_9 &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \ | + | N&=27{,}006{,}000{,}052_9 \ |
+ | &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \ | ||
&\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \ | &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \ | ||
&= 2-7+6-5+2 \ | &= 2-7+6-5+2 \ | ||
Line 13: | Line 14: | ||
&\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}. | &\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | -Aidensharp ~MRENTHUSIASM | + | -Aidensharp ~kante314 ~MRENTHUSIASM |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=11|num-a=13}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=11|num-a=13}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:32, 22 November 2021
Problem
The base-nine representation of the number is What is the remainder when is divided by
Solution
Recall that We expand by the definition of bases: -Aidensharp ~kante314 ~MRENTHUSIASM
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.