Difference between revisions of "2004 AMC 12A Problems/Problem 24"

(Solution with Asymptote)
 
m (Problem 24)
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
== Problem 24 ==
 
== Problem 24 ==
A plane contains points <math>A</math> and <math>B</math> with <math>AB = 1</math>. Let <math>S</math> be the union of all disks of radius <math>1</math> in the plane that cover <math>\overline{AB}</math>. What is the area of <math>S</math>?
+
A [[plane]] contains points <math>A</math> and <math>B</math> with <math>AB = 1</math>. Let <math>S</math> be the [[union]] of all disks of radius <math>1</math> in the plane that cover <math>\overline{AB}</math>. What is the area of <math>S</math>?
 
 
<math>\text {(A)} 2\pi + \sqrt3 \qquad \text {(B)} \frac {8\pi}{3} \qquad \text {(C)} 3\pi - \frac {\sqrt3}{2} \qquad \text {(D)} \frac {10\pi}{3} - \sqrt3 \qquad \text {(E)}4\pi - 2\sqrt3</math>
 
  
 +
<math>\textbf {(A) } 2\pi + \sqrt3 \qquad \textbf {(B) } \frac {8\pi}{3} \qquad \textbf {(C) } 3\pi - \frac {\sqrt3}{2} \qquad \textbf {(D) } \frac {10\pi}{3} - \sqrt3 \qquad \textbf {(E) }4\pi - 2\sqrt3</math>
  
 
==Solution==
 
==Solution==
<asy>
+
<center><asy>
 
pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);
 
pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);
  
Line 35: Line 34:
 
label("C",C,W);
 
label("C",C,W);
 
label("D",D,E);
 
label("D",D,E);
</asy>
+
</asy></center>
  
 
As the red circles move about segment <math>AB</math>, they cover the area we are looking for.
 
As the red circles move about segment <math>AB</math>, they cover the area we are looking for.
Line 43: Line 42:
  
 
This egg-like shape is <math>S</math>.
 
This egg-like shape is <math>S</math>.
<asy>
+
<center><asy>
 
pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);
 
pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);
  
Line 72: Line 71:
 
label("1",B/2+3D/2,E);
 
label("1",B/2+3D/2,E);
 
label("1",B/2+3C/2,E);
 
label("1",B/2+3C/2,E);
</asy>
+
</asy></center>
  
Now, the hard part is over. Finding the area of this shape is not challenging.
+
The area of the region can be found by dividing it into several sectors, namely
  
<math>A = 2(Blue Sector) + 2(Red Sector) - 2(Equilateral Triangle)</math>
+
<cmath>\begin{align*}
 +
A &= 2(\mathrm{Blue\ Sector}) + 2(\mathrm{Red\ Sector}) - 2(\mathrm{Equilateral\ Triangle}) \
 +
A &= 2\left(\frac{120^\circ}{360^\circ} \cdot \pi (2)^2\right) + 2\left(\frac{60^\circ}{360^\circ} \cdot \pi (1)^2\right) - 2\left(\frac{(1)^2\sqrt{3}}{4}\right) \
 +
A &= \frac{8\pi}{3} + \frac{\pi}{3} - \frac{\sqrt{3}}{2} \
 +
A &= 3\pi - \frac{\sqrt{3}}{2} \Longrightarrow \textbf {(C)}\end{align*}</cmath>
  
<math>A = 2(\frac{120^\circ}{360^\circ}\pi (2)^2) + 2(\frac{60^\circ}{360^\circ}\pi (1)^2) - 2(\frac{(1)^2\sqrt{3}}{4})</math>
+
==See also==
 +
{{AMC12 box|year=2004|ab=A|num-b=23|num-a=25}}
  
<math>A = \frac{8\pi}{3} + \frac{\pi}{3} - \frac{\sqrt{3}}{2}</math>
+
[[Category:Intermediate Geometry Problems]]
 
+
{{MAA Notice}}
<math>A = 3\pi - \frac{\sqrt{3}}{2} \Rightarrow \text {(C)}</math>
 
 
 
==See Also==
 
{{AMC12 box|year=2004|ab=A|num-b=23|num-a=25}}
 

Latest revision as of 21:25, 22 November 2021

Problem 24

A plane contains points $A$ and $B$ with $AB = 1$. Let $S$ be the union of all disks of radius $1$ in the plane that cover $\overline{AB}$. What is the area of $S$?

$\textbf {(A) } 2\pi + \sqrt3 \qquad \textbf {(B) } \frac {8\pi}{3} \qquad \textbf {(C) } 3\pi - \frac {\sqrt3}{2} \qquad \textbf {(D) } \frac {10\pi}{3} - \sqrt3 \qquad \textbf {(E) }4\pi - 2\sqrt3$

Solution

[asy] pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);  draw(arc(A,2,-60,60),blue); draw(arc(B,2,120,240),blue); draw(circle(C,1),red);  draw(A--(.5,3^.5)); draw(B--(-.5,3^.5)); draw(A--(.5,-3^.5)); draw(B--(-.5,-3^.5)); draw(A--B);  dot(A);dot(B);dot(C);dot(D);  label("\(1\)",(0,0),N); label("\(1\)",A/2+D/2,W); label("\(1\)",A/2+C/2,W); label("\(1\)",B/2+D/2,E); label("\(1\)",B/2+C/2,E); label("\(1\)",A/2+3D/2,W); label("\(1\)",A/2+3C/2,W); label("\(1\)",B/2+3D/2,E); label("\(1\)",B/2+3C/2,E);  label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,W); label("\(D\)",D,E); [/asy]

As the red circles move about segment $AB$, they cover the area we are looking for. On the left side, the circle must move around pivoted on $B$. On the right side, the circle must move pivoted on $A$ However, at the top and bottom, the circle must lie on both A and B, giving us our upper and lower bounds.

This egg-like shape is $S$.

[asy] pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);  draw(arc(A,2,-60,60),blue); draw(arc(B,2,120,240),blue); draw(arc(C,1,60,120),red); draw(arc(D,1,-120,-60),red);  draw(A--(.5,3^.5)); draw(B--(-.5,3^.5)); draw(A--(.5,-3^.5)); draw(B--(-.5,-3^.5)); draw(A--B);  dot(A);dot(B);dot(C);dot(D); label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,W); label("\(D\)",D,E);  label("\(1\)",(0,0),N); label("\(1\)",A/2+D/2,W); label("\(1\)",A/2+C/2,W); label("\(1\)",B/2+D/2,E); label("\(1\)",B/2+C/2,E); label("\(1\)",A/2+3D/2,W); label("\(1\)",A/2+3C/2,W); label("\(1\)",B/2+3D/2,E); label("\(1\)",B/2+3C/2,E); [/asy]

The area of the region can be found by dividing it into several sectors, namely

\begin{align*} A &= 2(\mathrm{Blue\ Sector}) + 2(\mathrm{Red\ Sector}) - 2(\mathrm{Equilateral\ Triangle}) \\ A &= 2\left(\frac{120^\circ}{360^\circ} \cdot \pi (2)^2\right) + 2\left(\frac{60^\circ}{360^\circ} \cdot \pi (1)^2\right) - 2\left(\frac{(1)^2\sqrt{3}}{4}\right) \\ A &= \frac{8\pi}{3} + \frac{\pi}{3} - \frac{\sqrt{3}}{2} \\ A &= 3\pi - \frac{\sqrt{3}}{2} \Longrightarrow \textbf {(C)}\end{align*}

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png