Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

(Solution 3)
(Swapped Sols 2 and 3, as to group solutions with similar ideas together.)
Line 26: Line 26:
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
==Solution 2 (Oversimplified but Risky)==
+
== Solution 2 ==
A quadratic equation <math>Ax^2+Bx+C=0</math> has one real solution if and only if <math>\sqrt{B^2-4AC}=0.</math> Similarly, it has imaginary solutions if and only if <math>\sqrt{B^2-4AC}<0.</math> We proceed as following:
 
 
 
We want both <math>x^2+bx+c</math> to be <math>1</math> value or imaginary and <math>x^2+cx+b</math> to be <math>1</math> value or imaginary. <math>x^2+4x+4</math> is one such case since <math>\sqrt {b^2-4ac}</math> is <math>0.</math> Also, <math>x^2+3x+3, x^2+2x+2, x^2+x+1</math> are always imaginary for both <math>b</math> and <math>c.</math> We also have <math>x^2+x+2</math> along with <math>x^2+2x+1</math> since the latter has one solution, while the first one is imaginary. Therefore, we have <math>6</math> total ordered pairs of integers, which is <math>\boxed{\textbf{(B) } 6}.</math>
 
 
 
~Arcticturn
 
 
 
 
 
== Solution 3 ==
 
 
Similarly to Solution 1, use the discriminant to get <math>b^2\leq 4c</math> and <math>c^2\leq 4b</math>. These can be rearranged to <math>c\geq \frac{1}{4}b^2</math> and <math>b\geq \frac{1}{4}c^2</math>. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:
 
Similarly to Solution 1, use the discriminant to get <math>b^2\leq 4c</math> and <math>c^2\leq 4b</math>. These can be rearranged to <math>c\geq \frac{1}{4}b^2</math> and <math>b\geq \frac{1}{4}c^2</math>. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:
  
Line 64: Line 56:
  
 
~aop2014
 
~aop2014
 +
 +
==Solution 3 (Oversimplified but Risky)==
 +
A quadratic equation <math>Ax^2+Bx+C=0</math> has one real solution if and only if <math>\sqrt{B^2-4AC}=0.</math> Similarly, it has imaginary solutions if and only if <math>\sqrt{B^2-4AC}<0.</math> We proceed as following:
 +
 +
We want both <math>x^2+bx+c</math> to be <math>1</math> value or imaginary and <math>x^2+cx+b</math> to be <math>1</math> value or imaginary. <math>x^2+4x+4</math> is one such case since <math>\sqrt {b^2-4ac}</math> is <math>0.</math> Also, <math>x^2+3x+3, x^2+2x+2, x^2+x+1</math> are always imaginary for both <math>b</math> and <math>c.</math> We also have <math>x^2+x+2</math> along with <math>x^2+2x+1</math> since the latter has one solution, while the first one is imaginary. Therefore, we have <math>6</math> total ordered pairs of integers, which is <math>\boxed{\textbf{(B) } 6}.</math>
 +
 +
~Arcticturn
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:49, 23 November 2021

Problem

How many ordered pairs of positive integers $(b,c)$ exist where both $x^2+bx+c=0$ and $x^2+cx+b=0$ do not have distinct, real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad$

Solution 1 (Casework)

A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:

  1. Since $x^2+bx+c=0$ does not have real solutions, we have $b^2\leq 4c.$
  2. Since $x^2+cx+b=0$ does not have real solutions, we have $c^2\leq 4b.$

Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\] We apply casework to the value of $b:$

  • If $b=1,$ then $1\leq 16c^2\leq 64,$ from which $c=1,2.$
  • If $b=2,$ then $16\leq 16c^2\leq 128,$ from which $c=1,2.$
  • If $b=3,$ then $81\leq 16c^2\leq 192,$ from which $c=3.$
  • If $b=4,$ then $256\leq 16c^2\leq 256,$ from which $c=4.$

Together, there are $\boxed{\textbf{(B) } 6}$ ordered pairs $(b,c),$ namely $(1,1),(1,2),(2,1),(2,2),(3,3),$ and $(4,4).$

~MRENTHUSIASM

Solution 2

Similarly to Solution 1, use the discriminant to get $b^2\leq 4c$ and $c^2\leq 4b$. These can be rearranged to $c\geq \frac{1}{4}b^2$ and $b\geq \frac{1}{4}c^2$. Now, we can roughly graph these two inequalities, letting one of them be the x axis and the other be y. The graph of solutions should look like this:

[asy] unitsize(2); Label f;  f.p=fontsize(6);  xaxis(0,5,Ticks(f, 1.0));  yaxis(0,5,Ticks(f, 1.0));  real f(real x)  {  return 0.25x^2;  }  real g(real x)  {  return 2*sqrt(x);  }  dot((1,1)); dot((2,1)); dot((1,2)); dot((2,2)); dot((3,3)); dot((4,4)); draw(graph(f,0,5)); draw(graph(g,0,5)); [/asy]

We are looking for lattice points(since b and c are positive integers), of which we can count $\boxed{\textbf{(B) } 6}$.

~aop2014

Solution 3 (Oversimplified but Risky)

A quadratic equation $Ax^2+Bx+C=0$ has one real solution if and only if $\sqrt{B^2-4AC}=0.$ Similarly, it has imaginary solutions if and only if $\sqrt{B^2-4AC}<0.$ We proceed as following:

We want both $x^2+bx+c$ to be $1$ value or imaginary and $x^2+cx+b$ to be $1$ value or imaginary. $x^2+4x+4$ is one such case since $\sqrt {b^2-4ac}$ is $0.$ Also, $x^2+3x+3, x^2+2x+2, x^2+x+1$ are always imaginary for both $b$ and $c.$ We also have $x^2+x+2$ along with $x^2+2x+1$ since the latter has one solution, while the first one is imaginary. Therefore, we have $6$ total ordered pairs of integers, which is $\boxed{\textbf{(B) } 6}.$

~Arcticturn

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png