Difference between revisions of "2012 AIME II Problems/Problem 15"
(→Solution 2) |
(→Solution 3) |
||
Line 63: | Line 63: | ||
==Solution 3== | ==Solution 3== | ||
+ | Use the angle bisector theorem to find <math>CD=\tfrac{21}{8}</math>, <math>BD=\tfrac{35}{8}</math>, and use Stewart's Theorem to find <math>AD=\tfrac{15}{8}</math>. Use Power of Point <math>D</math> to find <math>DE=\tfrac{49}{8}</math>, and so <math>AE=8</math>. Then use the <math>\textit{extended law of sines}</math> to find that the length of the circumradius of <math>\triangle ABC</math> is <math>\tfrac{7\sqrt{3}}{3}</math>. Use law of cosines to find <math>\angle CAD = \tfrac{\pi} {3}</math>, hence <math>\angle BAD = \tfrac{\pi}{3}</math> as well, and <math>\triangle BCE</math> is equilateral, so <math>BC=CE=BE=7</math>. | ||
<asy> | <asy> | ||
− | size( | + | size(175); |
− | pair | + | defaultpen(fontsize(9pt)); |
− | + | pair A,B,C,D,E,F,W; | |
− | + | B=MP("B",origin,dir(180)); C=MP("C",(7,0),dir(0)); A=MP("A",IP(CR(B,5),CR(C,3)),N); D=MP("D",extension(B,C,A,bisectorpoint(C,A,B)),dir(220)); path omega=circumcircle(A,B,C); E=MP("E",OP(omega,A--(A+20*(D-A))),S); path gamma=CR(midpoint(D--E),length(D-E)/2); F=MP("F",OP(omega,gamma),SE); pair X=MP("X",IP(omega,F--(F+2*(D-F))),N); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | C | ||
− | A | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | draw(omega^^A--B--C--cycle^^gamma); draw(A--E--F--cycle, gray); draw(E--X--F, royalblue); | |
− | + | dot("$W$",circumcenter(A,B,C),dir(180)); dot(circumcenter(D,E,F)); label("$\gamma$",gamma,dir(180)); label("$u$",X--D,dir(60)); label("$v$",D--F,dir(70)); | |
− | + | </asy> | |
− | + | Since <math>DE</math> is the diameter of circle <math>\gamma</math>, <math>\angle DFE</math> is <math>90^\circ</math>. Extending <math>DF</math> to intersect circle <math>\omega</math> at <math>X</math>, we find that <math>XE</math> is the diameter of <math>\omega</math> (since <math>\angle DFE</math> is <math>90^\circ</math>). Therefore, <math>XE=\tfrac{14\sqrt{3}}{3}</math>. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Let <math>EF=x</math>, <math>XD=u</math>, and <math>DF=v</math>. Then <math>XE^2-XF^2=EF^2=DE^2-DF^2</math>, so we get | |
+ | <cmath>(u+v)^2-v^2=\frac{196}{3}-\frac{2401}{64}</cmath> | ||
+ | which simplifies to | ||
+ | <cmath>u^2+2uv = \frac{5341}{192}.</cmath> | ||
+ | By Power of Point <math>D</math>, <math>uv=BD \cdot DC=735/64</math>. Combining with above, we get | ||
+ | <cmath>u^2=\frac{931}{192}\qquad \Longrightarrow\qquad XD=u=\frac{7\sqrt{19}}{8\sqrt{3}}.</cmath> | ||
+ | Because <math>\angle EXF</math> and <math>\angle EAF</math> intercept the same arc in circle <math>\omega</math>, <math>\angle EXF = \angle EAF</math>; similarly, <math>\angle XFA =\angle XEA</math>. Therefore, <math>\triangle XDE\sim\triangle ADF</math>. We get <math>AF:XE = AD:XD</math>, i.e., <math>AF\cdot u = AD\cdot XE</math>. Thus | ||
+ | <cmath>AF \cdot \frac{7\sqrt{19}}{8\sqrt{3}} = \frac{15}{8} \cdot \frac{14\sqrt{3}}{3} \qquad \Longrightarrow\qquad AF = \frac{30}{\sqrt{19}}.</cmath> | ||
+ | Thus <math>AF^2 = \tfrac{900}{19}</math>, so the answer is <math>900+19=\boxed{919}</math>. | ||
'''-Solution by TheBoomBox77''' | '''-Solution by TheBoomBox77''' |
Revision as of 01:55, 15 January 2022
Contents
[hide]Problem 15
Triangle is inscribed in circle with , , and . The bisector of angle meets side at and circle at a second point . Let be the circle with diameter . Circles and meet at and a second point . Then , where and are relatively prime positive integers. Find .
Quick Solution using Olympiad Terms
Take a force-overlaid inversion about and note and map to each other. As was originally the diameter of , is still the diameter of . Thus is preserved. Note that the midpoint of lies on , and and are swapped. Thus points and map to each other, and are isogonal. It follows that is a symmedian of , or that is harmonic. Then , and thus we can let for some . By the LoC, it is easy to see so . Solving gives , from which by Ptolemy's we see . We conclude the answer is .
- Emathmaster
Side Note: You might be wondering what the motivation for this solution is. Most of the people who've done EGMO Chapter 8 should recognize this as problem 8.32 (2009 Russian Olympiad) with the computational finish afterwards. Now if you haven't done this, but still know what inversion is, here's the motivation. We'd see that it's kinda hard to angle chase, and if we could, it would still be a bit hard to apply (you could use trig, but it won't be so clean most likely). If you give up after realizing that angle chasing won't work, you'd likely go in a similar approach to Solution 1 (below) or maybe be a bit more insightful and go with the elementary solution above.
Finally, we notice there's circles! Classic setup for inversion! Since we're involving an angle-bisector, the first thing that comes to mind is a force overlaid inversion described in Lemma 8.16 of EGMO (where we invert with radius and center , then reflect over the -angle bisector, which fixes ). We try applying this to the problem, and it's fruitful - we end up with this solution. -MSC
Solution 1
Use the angle bisector theorem to find , , and use Stewart's Theorem to find . Use Power of Point to find , and so . Use law of cosines to find , hence as well, and is equilateral, so . In triangle , let be the foot of the altitude from ; then , where we use signed lengths. Writing and , we get Note , and the Law of Cosines in gives . Also, , and ( is a diameter), so .
Plugging in all our values into equation , we get: The Law of Cosines in , with and gives Thus . The answer is .
Solution 2
Let , , for convenience. Let be the midpoint of segment . We claim that .
. Since is the angle bisector, it follows that and consequently . Therefore, . Now let . Since , is a diameter, so lies on the perpendicular bisector of ; hence , , are collinear. From , quadrilateral is cyclic. Therefore, . But and are both subtended by arc in , so they are equal. Thus , as claimed. As a result, . Combined with , we get and therefore By Stewart's Theorem on (with cevian ), we get so , so the answer is .
-Solution by thecmd999
Solution 3
Use the angle bisector theorem to find , , and use Stewart's Theorem to find . Use Power of Point to find , and so . Then use the to find that the length of the circumradius of is . Use law of cosines to find , hence as well, and is equilateral, so . Since is the diameter of circle , is . Extending to intersect circle at , we find that is the diameter of (since is ). Therefore, .
Let , , and . Then , so we get which simplifies to By Power of Point , . Combining with above, we get Because and intercept the same arc in circle , ; similarly, . Therefore, . We get , i.e., . Thus Thus , so the answer is .
-Solution by TheBoomBox77
Solution 4
It can be verified with law of cosines that Also, is the midpoint of major arc so and Thus is equilateral. Notice now that But so bisects Thus,
Let By law of cosines on we find But by ptolemy on , so so and the answer is
~abacadaea
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.