Difference between revisions of "2017 AMC 10A Problems/Problem 22"
(→Solution) |
Erics son07 (talk | contribs) (→Solution) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } \frac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \textbf{(B) } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } \sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \textbf{(E) } \frac{4}{3}-\frac{4\sqrt{3}\pi}{27}</math> | <math>\textbf{(A) } \frac{4\sqrt{3}\pi}{27}-\frac{1}{3}\qquad \textbf{(B) } \frac{\sqrt{3}}{2}-\frac{\pi}{8}\qquad \textbf{(C) } \frac{1}{2} \qquad \textbf{(D) } \sqrt{3}-\frac{2\sqrt{3}\pi}{9}\qquad \textbf{(E) } \frac{4}{3}-\frac{4\sqrt{3}\pi}{27}</math> | ||
− | ==Solution== | + | ==Solution 1== |
<asy> | <asy> | ||
real sqrt3 = 1.73205080757; | real sqrt3 = 1.73205080757; | ||
Line 16: | Line 16: | ||
</asy> | </asy> | ||
Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 \cdot r\sqrt{3} \cdot \frac{r}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | Let the radius of the circle be <math>r</math>, and let its center be <math>O</math>. Since <math>\overline{AB}</math> and <math>\overline{AC}</math> are tangent to circle <math>O</math>, then <math>\angle OBA = \angle OCA = 90^{\circ}</math>, so <math>\angle BOC = 120^{\circ}</math>. Therefore, since <math>\overline{OB}</math> and <math>\overline{OC}</math> are equal to <math>r</math>, then (pick your favorite method) <math>\overline{BC} = r\sqrt{3}</math>. The area of the equilateral triangle is <math>\frac{(r\sqrt{3})^2 \sqrt{3}}4 = \frac{3r^2 \sqrt{3}}4</math>, and the area of the sector we are subtracting from it is <math>\frac 13 \pi r^2 - \frac 12 \cdot r\sqrt{3} \cdot \frac{r}2 = \frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4</math>. The area outside of the circle is <math> \frac{3r^2 \sqrt{3}}4-\left(\frac{\pi r^2}3 -\frac{r^2 \sqrt{3}}4\right) = r^2 \sqrt{3} - \frac{\pi r^2}3</math>. Therefore, the answer is <cmath>\frac{r^2 \sqrt{3} - \frac{\pi r^2}3}{\frac{3r^2 \sqrt{3}}4} = \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}</cmath> | ||
+ | |||
+ | ==Solution 2== | ||
+ | <asy> | ||
+ | real sqrt3 = 1.73205080757; | ||
+ | draw(Circle((4, 4), 4)); | ||
+ | draw((4-2*sqrt3,6)--(4,4)--(4+2*sqrt3,6)--(4-2*sqrt3,6)--(4,12)--(4+2*sqrt3,6)); | ||
+ | label("A", (4, 12.4)); | ||
+ | label("B", (-.3, 6.3)); | ||
+ | label("C", (8.3, 6.3)); | ||
+ | label("O", (4, 3.4)); | ||
+ | </asy> | ||
+ | (same diagram as Solution 1) | ||
+ | |||
+ | WLOG, let the side length of the triangle be <math>1</math>. Then, the area of the triangle is <math>\frac{\sqrt{3}}{4}</math>. We are looking for <math>\frac{Area of the portion inside the triangle but outside the circle}{Area of triangle}</math>. Since <math>m\angle ABO = 90^{\circ}=</math>m\angle ACO = 90^{\circ}<math>, and </math>m\angle ABC = m\angle ACB = 60^{\circ}<math>, we know </math>m\angle OBC=m\angle OCB=30^{\circ}<math>, and </math>m\angle BOC = 120^{\circ}<math>. Drop an angle bisector of </math>O<math> onto </math>BC<math>, call the point of intersection </math>D<math>. By SAS congruence, </math>\triangle BDO \cong \triangle CDO<math>, by CPCTC (Congruent Parts of Congruent Triangles are Congruent) </math>BD \cong DC<math> and they both measure </math>frac{1}{2}<math>. By 30-60-90 triangle, </math>OC = BO = \frac{\sqrt{3}}{3}<math>. The area of the region bounded by arc BC is one-third the area of circle O, whose area is </math>\left(\frac{\sqrt{3}}{3}\right)^{2}\pi=\frac{1}{3}\pi<math>. Therefore, the area of the region bounded by arc BC is </math>\frac{1}{3}\cdot\frac{1}{3}\pi=\frac{\pi}{9}<math>. We are nearly there. By 30-60-90 triangle, we know </math>DO = \frac{\sqrt{3}}{6}<math>, so the area of </math>\triangle BOC<math> is </math>\frac{1\cdot\frac{\sqrt{3}}{6}}{2}=\frac{\sqrt{3}}{12}<math>. The area of the region inside both the triangle and circle is the area of the region bounded by arc BC minus the area of </math>\triangle BOC<math>: </math>\frac{\pi}{9}-\frac{\sqrt{3}}{12}<math>. The area of the region outside of the circle but inside the triangle is </math>\frac{\sqrt{3}}{4}-\left(\frac{\pi}{9}-\frac{\sqrt{3}}{12}\right)=\frac{\sqrt{3}}{4}-\frac{\pi}{9}+\frac{\sqrt{3}}{12}=\frac{\sqrt{3}}{3}-\frac{\pi}{9}<math> and the ratio is </math>\frac{\frac{\sqrt{3}}{3}-\frac{\pi}{9}}{\frac{\sqrt{3}}{4}}=\left(\frac{\sqrt{3}}{3}-\frac{\pi}{9}\right)\cdot\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3\sqrt{3}}-\frac{4\pi}{9\sqrt{3}}=\frac{4}{3}-\frac{4\sqrt{3}\pi}{27} \Longrightarrow \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}$. | ||
+ | |||
+ | ~JH. L | ||
==Video Solution== | ==Video Solution== |
Revision as of 22:10, 13 June 2022
Contents
[hide]Problem
Sides and of equilateral triangle are tangent to a circle at points and respectively. What fraction of the area of lies outside the circle?
Solution 1
Let the radius of the circle be , and let its center be . Since and are tangent to circle , then , so . Therefore, since and are equal to , then (pick your favorite method) . The area of the equilateral triangle is , and the area of the sector we are subtracting from it is . The area outside of the circle is . Therefore, the answer is
Solution 2
(same diagram as Solution 1)
WLOG, let the side length of the triangle be . Then, the area of the triangle is . We are looking for . Since m\angle ACO = 90^{\circ}m\angle ABC = m\angle ACB = 60^{\circ}m\angle OBC=m\angle OCB=30^{\circ}m\angle BOC = 120^{\circ}OBCD\triangle BDO \cong \triangle CDOBD \cong DCfrac{1}{2}OC = BO = \frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{3}\right)^{2}\pi=\frac{1}{3}\pi\frac{1}{3}\cdot\frac{1}{3}\pi=\frac{\pi}{9}DO = \frac{\sqrt{3}}{6}\triangle BOC\frac{1\cdot\frac{\sqrt{3}}{6}}{2}=\frac{\sqrt{3}}{12}\triangle BOC\frac{\pi}{9}-\frac{\sqrt{3}}{12}\frac{\sqrt{3}}{4}-\left(\frac{\pi}{9}-\frac{\sqrt{3}}{12}\right)=\frac{\sqrt{3}}{4}-\frac{\pi}{9}+\frac{\sqrt{3}}{12}=\frac{\sqrt{3}}{3}-\frac{\pi}{9}\frac{\frac{\sqrt{3}}{3}-\frac{\pi}{9}}{\frac{\sqrt{3}}{4}}=\left(\frac{\sqrt{3}}{3}-\frac{\pi}{9}\right)\cdot\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3\sqrt{3}}-\frac{4\pi}{9\sqrt{3}}=\frac{4}{3}-\frac{4\sqrt{3}\pi}{27} \Longrightarrow \boxed{\textbf{(E) } \frac 43 - \frac{4\sqrt 3 \pi}{27}}$.
~JH. L
Video Solution
https://www.youtube.com/watch?v=GnJDNtjd57k&feature=youtu.be
https://youtu.be/ADDAOhNAsjQ -Video Solution by Richard Rusczyk
See Also
2017 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.