Difference between revisions of "1950 AHSME Problems/Problem 11"
(???) |
(→Solution) |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
== Problem== | == Problem== | ||
− | If in the formula <math> C =\frac{en}{R+nr} </math>, <math>n</math> is increased while <math>e</math>, <math>R</math> and <math>r</math> are kept constant, then <math>C</math>: | + | If in the formula <math> C =\frac{en}{R+nr} </math>, where <math>e</math>, <math>n</math>, <math>R</math> and <math>r</math> are all positive, <math>n</math> is increased while <math>e</math>, <math>R</math> and <math>r</math> are kept constant, then <math>C</math>: |
<math> \textbf{(A)}\ \text{Increases}\qquad\textbf{(B)}\ \text{Decreases}\qquad\textbf{(C)}\ \text{Remains constant}\qquad\textbf{(D)}\ \text{Increases and then decreases}\qquad\\ \textbf{(E)}\ \text{Decreases and then increases} </math> | <math> \textbf{(A)}\ \text{Increases}\qquad\textbf{(B)}\ \text{Decreases}\qquad\textbf{(C)}\ \text{Remains constant}\qquad\textbf{(D)}\ \text{Increases and then decreases}\qquad\\ \textbf{(E)}\ \text{Decreases and then increases} </math> | ||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | + | Divide both the numerator and denominator by <math>n</math>, to get <math>C=\frac{e}{\frac{R}{n}+r}</math>. If <math>n</math> increases then the denominator decreases; so that <math>C</math> <math>\boxed{\mathrm{(A)}\text{ }\mathrm{ Increases}.}</math> | |
− | + | but what if <math>n\leq 0</math> | |
− | + | ==See Also== | |
− | == | + | {{AHSME 50p box|year=1950|num-b=10|num-a=12}} |
− | {{ | + | [[Category:Introductory Algebra Problems]] |
+ | {{MAA Notice}} |
Latest revision as of 14:36, 3 July 2022
Problem
If in the formula , where , , and are all positive, is increased while , and are kept constant, then :
Solution
Divide both the numerator and denominator by , to get . If increases then the denominator decreases; so that
but what if
See Also
1950 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.