Difference between revisions of "1993 AIME Problems/Problem 3"
m (→Solution) |
(→Solution) |
||
Line 10: | Line 10: | ||
What was the total number of fish caught during the festival? | What was the total number of fish caught during the festival? | ||
− | == Solution == | + | == Solution 1== |
Suppose that the number of fish is <math>x</math> and the number of contestants is <math>y</math>. The <math>y-(9+5+7)=y-21</math> fishers that caught <math>3</math> or more fish caught a total of <math>x - \left(0\cdot(9) + 1\cdot(5) + 2\cdot(7)\right) = x - 19</math> fish. Since they averaged <math>6</math> fish, <center><math>6 = \frac{x - 19}{y - 21} \Longrightarrow x - 19 = 6y - 126.</math></center> Similarily, those who caught <math>12</math> or fewer fish averaged <math>5</math> fish per person, so <center><math>5 = \frac{x - (13(5) + 14(2) + 15(1))}{y - 8} = \frac{x - 108}{y - 8} \Longrightarrow x - 108 = 5y - 40.</math></center> Solving the two equation system, we find that <math>y = 175</math> and <math>x = \boxed{943}</math>, the answer. | Suppose that the number of fish is <math>x</math> and the number of contestants is <math>y</math>. The <math>y-(9+5+7)=y-21</math> fishers that caught <math>3</math> or more fish caught a total of <math>x - \left(0\cdot(9) + 1\cdot(5) + 2\cdot(7)\right) = x - 19</math> fish. Since they averaged <math>6</math> fish, <center><math>6 = \frac{x - 19}{y - 21} \Longrightarrow x - 19 = 6y - 126.</math></center> Similarily, those who caught <math>12</math> or fewer fish averaged <math>5</math> fish per person, so <center><math>5 = \frac{x - (13(5) + 14(2) + 15(1))}{y - 8} = \frac{x - 108}{y - 8} \Longrightarrow x - 108 = 5y - 40.</math></center> Solving the two equation system, we find that <math>y = 175</math> and <math>x = \boxed{943}</math>, the answer. | ||
+ | == Solution 2== | ||
== See also == | == See also == |
Revision as of 22:51, 8 July 2022
Contents
[hide]Problem
The table below displays some of the results of last summer's Frostbite Falls Fishing Festival, showing how many contestants caught fish for various values of .
In the newspaper story covering the event, it was reported that
- (a) the winner caught fish;
- (b) those who caught or more fish averaged fish each;
- (c) those who caught or fewer fish averaged fish each.
What was the total number of fish caught during the festival?
Solution 1
Suppose that the number of fish is and the number of contestants is . The fishers that caught or more fish caught a total of fish. Since they averaged fish,
Similarily, those who caught or fewer fish averaged fish per person, so
Solving the two equation system, we find that and , the answer.
Solution 2
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.