Difference between revisions of "2016 USAMO Problems/Problem 3"
(→See also) |
|||
(24 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
Lines <math>I_B F</math> and <math>I_C E</math> meet at <math>P.</math> Prove that <math>\overline{PO}</math> and <math>\overline{YZ}</math> are perpendicular. | Lines <math>I_B F</math> and <math>I_C E</math> meet at <math>P.</math> Prove that <math>\overline{PO}</math> and <math>\overline{YZ}</math> are perpendicular. | ||
==Solution== | ==Solution== | ||
− | + | This problem can be proved in the following two steps. | |
− | 1. Let <math>I_A</math> be the <math>A</math>-excenter, then <math>I_A,O,P</math> are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for <math>triangle I_AI_BI_C.</math> | + | 1. Let <math>I_A</math> be the <math>A</math>-excenter, then <math>I_A,O,</math> and <math>P</math> are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for <math>\triangle I_AI_BI_C.</math> |
− | 2. Show that <math>I_AY^2-I_AZ^2=OY^2-OZ^2,</math> which | + | 2. Show that <math>I_AY^2-I_AZ^2=OY^2-OZ^2,</math> which implies <math>\overline{OI_A}\perp\overline{YZ}.</math> This can be proved by multiple applications of the Pythagorean Thm. |
+ | |||
+ | ==Solution 2== | ||
+ | [[File:2016 USAMO 3a.png|300px|right]] | ||
+ | We find point <math>T</math> on line <math>YZ,</math> we prove that <math>TY \perp OI_A</math> and state that <math>P</math> is the point <math>X(24)</math> from ENCYCLOPEDIA OF TRIANGLE, therefore <math>P \in OI_A.</math> | ||
+ | |||
+ | Let <math>\omega</math> be circumcircle of <math>\triangle ABC</math> centered at <math>O.</math> | ||
+ | Let <math>Y_1,</math> and <math>Z_1</math> be crosspoints of <math>\omega</math> and <math>BY,</math> and <math>CZ,</math> respectively. | ||
+ | Let <math>T</math> be crosspoint of <math>YZ</math> and <math>Y_1 Z_1.</math> | ||
+ | In accordance the Pascal theorem for pentagon <math>AZ_1BCY_1,</math> <math>AT</math> is tangent to <math>\omega</math> at <math>A.</math> | ||
+ | |||
+ | [[File:2016 USAMO 3b.png|500px|right]] | ||
+ | Let <math>I_A, I_B, I_C</math> be <math>A, B,</math> and <math>C</math>-excenters of <math>\triangle ABC.</math> | ||
+ | Denote <cmath>a = BC, b = AC, c = AB, 2\alpha = \angle CAB, 2\beta = \angle ABC, 2\gamma = \angle ACB,</cmath> | ||
+ | <cmath>\psi = 90^\circ – \gamma + \beta, X = AI_A \cap \omega, X_1 = BC \cap AI_A,</cmath> | ||
+ | <cmath>I = BI_B \cap CI_C, U= YZ \cap AI_A, W = Y_1Z_1 \cap AI_A,</cmath> | ||
+ | <math>V</math> is the foot ot perpendicular from <math>O</math> to <math>AI_A.</math> | ||
+ | |||
+ | <math>I</math> is ortocenter of <math>\triangle I_A I_B I_C</math> and incenter of <math>\triangle ABC.</math> | ||
+ | |||
+ | <math>\omega</math> is the Nine–point circle of <math>\triangle I_A I_B I_C.</math> | ||
+ | |||
+ | <math>Y_1</math> is the midpoint of <math>II_B, Z_1</math> is the midpoint of <math>II_C</math> in accordance with property of Nine–point circle <math>\implies</math> | ||
+ | <cmath>Y_1Z_1 || I_B AI_C || VO, IW = AW \implies TW \perp AI.</cmath> | ||
+ | <cmath>\angle AXC = 180 ^\circ – 2\gamma – \alpha = 90 ^\circ – \gamma + \beta = \psi.</cmath> | ||
+ | <cmath>\angle TAI = \angle VOA = 2\beta + \alpha = 90 ^\circ – \gamma + \beta = \psi.</cmath> | ||
+ | <cmath>I_A X_1 = IX_1 = BX_1 = 2R \sin \alpha \implies</cmath> | ||
+ | <cmath>\cot \angle OI_A A = \frac {VI_A}{VO} = \frac {R \sin \psi + 2R \sin \alpha}{R \cos \psi} = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}.</cmath> | ||
+ | <cmath>CX = \frac {ab}{b+c} \implies \frac {AI}{IX}= \frac {AC}{CX}= \frac {b+c}{a} \implies AI = AX \frac {b+c}{a+b+c},</cmath> | ||
+ | <cmath>AW = \frac {AI}{2}, UW = AU – AW,</cmath> | ||
+ | In <math>\triangle ABC</math> segment <math>YZ</math> cross segment <math>AX \implies \frac {AU}{UX} = \frac {m + nk}{k+1},</math> where <math>n = \frac {a}{b}, m = \frac{a}{c}, k=\frac {b}{c},</math> | ||
+ | <cmath>\frac {AU}{UX} = \frac{2a}{b+c} \implies AU = AX \cdot \frac {b+c}{2a +b +c}.</cmath> | ||
+ | <cmath>\frac {AU – AW}{AW} = \frac {b+c} {2a + b + c}.</cmath> | ||
+ | [[File:2016 USAMO 3c.png|400px|right]] | ||
+ | <cmath>\cot \angle UTW = \frac {TW}{UW} = \frac {AW \cdot \tan \psi}{AU – AW} = \tan \psi \cdot \frac {2a +b+c}{b+c} =</cmath> | ||
+ | <cmath>=\tan \psi \cdot \frac {2a}{b+c} + \tan \psi = \frac {2 \sin \alpha}{\sin \psi} \tan \psi + \tan \psi = \tan \psi + \frac{2 \sin\alpha}{\cos \psi}</cmath> | ||
+ | <cmath>\implies \angle UTW = \angle OI_AA .</cmath> | ||
+ | <cmath>TW \perp AI_A \implies TYZ \perp OI_A.</cmath> | ||
+ | |||
+ | Let <math>\triangle II_B I_C</math> be the base triangle with orthocenter <math>I_A,</math> center of Nine-points circle <math>O \implies OI_A</math> be the Euler line of <math>\triangle II_B I_C.</math> | ||
+ | |||
+ | <math>\triangle ABC</math> is orthic triangle of <math>\triangle II_B I_C,</math> | ||
+ | |||
+ | <math>\triangle DEF</math> is orthic-of-orthic triangle. | ||
+ | |||
+ | <math>P</math> is perspector of base triangle and orthic-of-orthic triangle. | ||
+ | |||
+ | Therefore <math>P</math> is point <math>X(24)</math> of ENCYCLOPEDIA OF TRIANGLE CENTERS which lies on Euler line of the base triangle. | ||
+ | [[https://artofproblemsolving.com/wiki/index.php/Kimberling%E2%80%99s_point_X(24)]] | ||
+ | [[File:2016 USAMO 3d.png|300px|right]] | ||
+ | |||
+ | <i><b>Claim</b></i> <cmath>\frac {AU}{UX} = \frac {m + nk}{k + 1}.</cmath> | ||
+ | <i><b>Proof</b></i> | ||
+ | <cmath>\frac {[AYZ]}{[ABC]} = \frac {AZ \cdot AY}{AB \cdot AC} = \frac {1}{(n + 1) \cdot (m+1)}, </cmath> | ||
+ | <cmath>\frac {[BXZ]}{[ABC]} = \frac {BZ \cdot BX}{AB \cdot BC} = \frac {n}{(n + 1) \cdot (k+1)}, </cmath> | ||
+ | <cmath>\frac {[CXY]}{[ABC]} = \frac {CY \cdot CX}{AC \cdot BC} = \frac {mk}{(m + 1) \cdot (k+1)},</cmath> | ||
+ | <cmath>\frac {[XYZ]}{[ABC]} = 1 - \frac {[AYZ]}{[ABC]} – \frac {[BXZ]}{[ABC]} – \frac {[CXY]}{[ABC]} = \frac {m+nk}{(m + 1) \cdot (k+1)\cdot (n+1)}, </cmath> | ||
+ | <cmath>\frac {AU}{UX} = \frac {[AYZ]}{[XYZ]} = \frac {m + nk}{k + 1}.</cmath> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
− | |||
==See also== | ==See also== | ||
{{USAMO newbox|year=2016|num-b=2|num-a=4}} | {{USAMO newbox|year=2016|num-b=2|num-a=4}} | ||
+ | |||
+ | {{MAA Notice}} |
Latest revision as of 20:36, 17 October 2022
Contents
[hide]Problem
Let be an acute triangle, and let and denote its -excenter, -excenter, and circumcenter, respectively. Points and are selected on such that and Similarly, points and are selected on such that and
Lines and meet at Prove that and are perpendicular.
Solution
This problem can be proved in the following two steps.
1. Let be the -excenter, then and are colinear. This can be proved by the Trigonometric Form of Ceva's Theorem for
2. Show that which implies This can be proved by multiple applications of the Pythagorean Thm.
Solution 2
We find point on line we prove that and state that is the point from ENCYCLOPEDIA OF TRIANGLE, therefore
Let be circumcircle of centered at Let and be crosspoints of and and respectively. Let be crosspoint of and In accordance the Pascal theorem for pentagon is tangent to at
Let be and -excenters of Denote is the foot ot perpendicular from to
is ortocenter of and incenter of
is the Nine–point circle of
is the midpoint of is the midpoint of in accordance with property of Nine–point circle In segment cross segment where
Let be the base triangle with orthocenter center of Nine-points circle be the Euler line of
is orthic triangle of
is orthic-of-orthic triangle.
is perspector of base triangle and orthic-of-orthic triangle.
Therefore is point of ENCYCLOPEDIA OF TRIANGLE CENTERS which lies on Euler line of the base triangle. [[1]]
Claim Proof
vladimir.shelomovskii@gmail.com, vvsss
See also
2016 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.