Difference between revisions of "2018 AMC 12A Problems/Problem 6"
Ironicninja (talk | contribs) |
|||
(One intermediate revision by one other user not shown) | |||
Line 11: | Line 11: | ||
==Solution 3== | ==Solution 3== | ||
− | Since the median | + | Since the median is <math>n</math>, then <math>\frac{m+10+n+1}{2} = n \Rightarrow m+11 = n</math>, or <math>m= n-11</math>. Plug this in for <math>m</math> values to get <math>\frac{7n-16}{6} = n \Rightarrow 7n-16 = 6n \Rightarrow n= 16</math>. Plug it back in to get <math>m = 5</math>, thus <math>16 + 5 = \boxed{21}</math>. |
− | iron | + | ~ iron |
+ | |||
+ | == Video Solution 1 == | ||
+ | https://youtu.be/5dWRO1-OZOM | ||
+ | |||
+ | ~Education, the Study of Everything | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2018|ab=A|num-b=5|num-a=7}} | {{AMC12 box|year=2018|ab=A|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:56, 28 October 2022
Problem
For positive integers and such that , both the mean and the median of the set are equal to . What is ?
Solution 1
The mean and median are so and . Solving this gives for . (trumpeter)
Solution 2
This is an alternate solution if you don't want to solve using algebra. First, notice that the median is the average of and . Therefore, , so the answer is , which must be odd. This leaves two remaining options: and . Notice that if the answer is , then is odd, while is even if the answer is . Since the average of the set is an integer , the sum of the terms must be even. is odd by definition, so we know that must also be odd, thus with a few simple calculations is odd. Because all other answers have been eliminated, is the only possibility left. Therefore, . ∎ --anna0kear
Solution 3
Since the median is , then , or . Plug this in for values to get . Plug it back in to get , thus .
~ iron
Video Solution 1
~Education, the Study of Everything
See Also
2018 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.