Difference between revisions of "2018 AMC 12A Problems/Problem 2"

m (Solution 3)
 
(15 intermediate revisions by one other user not shown)
Line 5: Line 5:
 
<math>\textbf{(A) } 48 \qquad \textbf{(B) } 49 \qquad \textbf{(C) } 50 \qquad \textbf{(D) } 51 \qquad \textbf{(E) } 52 </math>
 
<math>\textbf{(A) } 48 \qquad \textbf{(B) } 49 \qquad \textbf{(C) } 50 \qquad \textbf{(D) } 51 \qquad \textbf{(E) } 52 </math>
  
== Solution 1==
+
== Solution 1 ==
  
Since each rock costs 1 dollar less than three times its weight, the answer is just <math>3\cdot 18=54</math> minus the minimum number of rocks we need to make <math>18</math> pounds, or
+
The value of <math>5</math>-pound rocks is <math>\$14\div5=\$2.80</math> per pound, and the value of <math>4</math>-pound rocks is <math>\$11\div4=\$2.75</math> per pound. Clearly, Carl should not carry more than three <math>1</math>-pound rocks. Otherwise, he can replace some <math>1</math>-pound rocks with some heavier rocks, preserving the weight but increasing the total value.
<cmath>54-4=\boxed{\textbf{(C) } 50}.</cmath>
 
  
== Solution 2 ==
+
We perform casework on the number of <math>1</math>-pound rocks Carl can carry:
 
+
<cmath>\begin{array}{c|c|c||c}
The ratio of dollar per pound is greatest for the <math>5</math> pound rock, then the <math>4</math> pound, lastly the <math>1</math> pound. So we should take two <math>5</math> pound rocks and two <math>4</math> pound rocks. The total value, in dollars, is <cmath>2\cdot14+2\cdot11=\boxed{\textbf{(C) } 50}.</cmath>
+
& & & \\ [-2.5ex]
~steakfails
+
\boldsymbol{1}\textbf{-Pound Rocks} & \boldsymbol{4}\textbf{-Pound Rocks} & \boldsymbol{5}\textbf{-Pound Rocks} & \textbf{Total Value} \\
 
+
\textbf{(}\boldsymbol{\$2}\textbf{ Each)} & \textbf{(}\boldsymbol{\$11}\textbf{ Each)} & \textbf{(}\boldsymbol{\$14}\textbf{ Each)} & \\ [0.5ex]
== Solution 3 ==
+
\hline
The unit value of <math>5</math>-pound rocks is <math>\$2.8</math> per pound, and the unit value of <math>4</math>-pound rocks is <math>\$2.75</math> per pound. Intuitively, we wish to maximize the number of <math>5</math>-pound rocks and minimize the number of <math>1</math>-pound rocks. We have two cases:
+
& & & \\ [-2ex]
<ol style="margin-left: 1.5em;">
+
0 & 2 & 2 & \$50 \\
  <li>We get three <math>5</math>-pound rocks and three <math>1</math>-pound rocks, for a total value of <math>\$14\cdot3+\$2\cdot3=\$48.</math></li><p>
+
& & & \\ [-2.25ex]
  <li>We get two <math>5</math>-pound rocks and two <math>4</math>-pound rocks, for a total value of <math>\$14\cdot2+\$11\cdot2=\$50.</math></li><p>
+
1 & 3 & 1 & \$49 \\
</ol>
+
& & & \\ [-2.25ex]
Clearly, Case 2 produces the maximum total value. So, the answer is <math>\boxed{\textbf{(C) } 50}.</math>
+
2 & 4 & 0 & \$48 \\
 +
& & & \\ [-2.25ex]
 +
3 & 0 & 3 & \$48
 +
\end{array}</cmath>
 +
Clearly, the maximum value of the rocks Carl can carry is <math>\boxed{\textbf{(C) } 50}</math> dollars.
  
 
<u><b>Remark</b></u>
 
<u><b>Remark</b></u>
  
Note that the upper bound of the total value is <math>\lfloor2.8\cdot18\rfloor=50</math> dollars, from which we can eliminate choices <math>\textbf{(D)}</math> and <math>\textbf{(E)}.</math>
+
Note that an upper bound of the total value is <math>\$2.80\cdot18=\$50.40,</math> from which we can eliminate choices <math>\textbf{(D)}</math> and <math>\textbf{(E)}.</math>
  
 
~Pyhm2017 (Fundamental Logic)
 
~Pyhm2017 (Fundamental Logic)
  
 
~MRENTHUSIASM (Reconstruction)
 
~MRENTHUSIASM (Reconstruction)
 +
 +
== Solution 2==
 +
 +
Since each rock is worth <math>1</math> dollar less than <math>3</math> times its weight (in pounds), the answer is just <math>3\cdot 18=54</math> minus the minimum number of rocks we need to make <math>18</math> pounds. Note that we need at least <math>4</math> rocks (two <math>5</math>-pound rocks and two <math>4</math>-pound rocks) to make <math>18</math> pounds, so the answer is <math>54-4=\boxed{\textbf{(C) } 50}.</math>
 +
 +
~Kevindujin (Solution)
 +
 +
~MRENTHUSIASM (Revision)
 +
 +
== Video Solution 1 ==
 +
https://youtu.be/mTf6Nz4rKjw
 +
 +
~Education, the Study of Everything
  
 
== See Also ==
 
== See Also ==
 
{{AMC12 box|year=2018|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2018|ab=A|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:58, 28 October 2022

Problem

While exploring a cave, Carl comes across a collection of $5$-pound rocks worth $$14$ each, $4$-pound rocks worth $$11$ each, and $1$-pound rocks worth $$2$ each. There are at least $20$ of each size. He can carry at most $18$ pounds. What is the maximum value, in dollars, of the rocks he can carry out of the cave?

$\textbf{(A) } 48 \qquad \textbf{(B) } 49 \qquad \textbf{(C) } 50 \qquad \textbf{(D) } 51 \qquad \textbf{(E) } 52$

Solution 1

The value of $5$-pound rocks is $$14\div5=$2.80$ per pound, and the value of $4$-pound rocks is $$11\div4=$2.75$ per pound. Clearly, Carl should not carry more than three $1$-pound rocks. Otherwise, he can replace some $1$-pound rocks with some heavier rocks, preserving the weight but increasing the total value.

We perform casework on the number of $1$-pound rocks Carl can carry: \[\begin{array}{c|c|c||c} & & & \\ [-2.5ex] \boldsymbol{1}\textbf{-Pound Rocks} & \boldsymbol{4}\textbf{-Pound Rocks} & \boldsymbol{5}\textbf{-Pound Rocks} & \textbf{Total Value} \\ \textbf{(}\boldsymbol{$2}\textbf{ Each)} & \textbf{(}\boldsymbol{$11}\textbf{ Each)} & \textbf{(}\boldsymbol{$14}\textbf{ Each)} & \\ [0.5ex] \hline & & & \\ [-2ex] 0 & 2 & 2 & $50 \\  & & & \\ [-2.25ex] 1 & 3 & 1 & $49 \\ & & & \\ [-2.25ex] 2 & 4 & 0 & $48 \\ & & & \\ [-2.25ex] 3 & 0 & 3 & $48 \end{array}\] Clearly, the maximum value of the rocks Carl can carry is $\boxed{\textbf{(C) } 50}$ dollars.

Remark

Note that an upper bound of the total value is $$2.80\cdot18=$50.40,$ from which we can eliminate choices $\textbf{(D)}$ and $\textbf{(E)}.$

~Pyhm2017 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 2

Since each rock is worth $1$ dollar less than $3$ times its weight (in pounds), the answer is just $3\cdot 18=54$ minus the minimum number of rocks we need to make $18$ pounds. Note that we need at least $4$ rocks (two $5$-pound rocks and two $4$-pound rocks) to make $18$ pounds, so the answer is $54-4=\boxed{\textbf{(C) } 50}.$

~Kevindujin (Solution)

~MRENTHUSIASM (Revision)

Video Solution 1

https://youtu.be/mTf6Nz4rKjw

~Education, the Study of Everything

See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png