Difference between revisions of "2018 AMC 12B Problems/Problem 22"
MRENTHUSIASM (talk | contribs) (→Solution 3 (Answer Choices): Hmm, this solution is not very convincing that the answer needs to be divisible by 4. What if a=c and b!=d? If we swap (a,c) and (b,d), we only get two solutions.) |
m (→Solution 1 (Stars and Bars)) |
||
Line 10: | Line 10: | ||
We rewrite the given equation as <math>(9-a)+b+(9-c)+d=9,</math> or <cmath>a'+b+c'+d=9.</cmath> By the stars and bars argument, there are <math>\binom{9+4-1}{4-1}=\boxed{\textbf{(D) } 220}</math> ordered quadruples <math>(a',b,c',d).</math> | We rewrite the given equation as <math>(9-a)+b+(9-c)+d=9,</math> or <cmath>a'+b+c'+d=9.</cmath> By the stars and bars argument, there are <math>\binom{9+4-1}{4-1}=\boxed{\textbf{(D) } 220}</math> ordered quadruples <math>(a',b,c',d).</math> | ||
− | ~pieater314159 | + | ~pieater314159 |
== Solution 2 (Casework) == | == Solution 2 (Casework) == |
Revision as of 19:18, 14 November 2022
Problem
Consider polynomials of degree at most , each of whose coefficients is an element of . How many such polynomials satisfy ?
Solution 1 (Stars and Bars)
Suppose that This problem is equivalent to counting the ordered quadruples where all of and are integers from through such that Let and Note that both of and are integers from through Moreover, the ordered quadruples and the ordered quadruples have one-to-one correspondence.
We rewrite the given equation as or By the stars and bars argument, there are ordered quadruples
~pieater314159
Solution 2 (Casework)
Suppose that This problem is equivalent to counting the ordered quadruples where all of and are integers from through such that which rearranges to Note that is an integer from through and is an integer from through Therefore, both of and are integers from through We construct the following table: We sum up the counts in the last column to get the answer
~BJHHar ~MRENTHUSIASM
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.