Difference between revisions of "2005 AMC 8 Problems/Problem 13"
m (→Problem) |
Pi is 3.14 (talk | contribs) m (→Solution) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem == |
The area of polygon <math> ABCDEF</math> is 52 with <math> AB=8</math>, <math>BC=9</math> and <math>FA=5</math>. What is <math> DE+EF</math>? | The area of polygon <math> ABCDEF</math> is 52 with <math> AB=8</math>, <math>BC=9</math> and <math>FA=5</math>. What is <math> DE+EF</math>? | ||
− | <asy>pair a=(0,9), b=(8,9), c=(8,0), d=(4,0), e=(4,4), f=(0,4); | + | |
+ | <asy> | ||
+ | pair a=(0,9), b=(8,9), c=(8,0), d=(4,0), e=(4,4), f=(0,4); | ||
draw(a--b--c--d--e--f--cycle); | draw(a--b--c--d--e--f--cycle); | ||
draw(shift(0,-.25)*a--shift(.25,-.25)*a--shift(.25,0)*a); | draw(shift(0,-.25)*a--shift(.25,-.25)*a--shift(.25,0)*a); | ||
Line 16: | Line 18: | ||
label("5", (0,6.5), W); | label("5", (0,6.5), W); | ||
label("8", (4,9), N); | label("8", (4,9), N); | ||
− | label("9", (8, 4.5), E);</asy> | + | label("9", (8, 4.5), E); |
+ | </asy> | ||
<math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math> | <math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 </math> | ||
− | ==Solution== | + | == Solution == |
Notice that <math>AF + DE = BC</math>, so <math>DE=4</math>. Let <math>O</math> be the intersection of the extensions of <math>AF</math> and <math>DC</math>, which makes rectangle <math>ABCO</math>. The area of the polygon is the area of <math>FEDO</math> subtracted from the area of <math>ABCO</math>. | Notice that <math>AF + DE = BC</math>, so <math>DE=4</math>. Let <math>O</math> be the intersection of the extensions of <math>AF</math> and <math>DC</math>, which makes rectangle <math>ABCO</math>. The area of the polygon is the area of <math>FEDO</math> subtracted from the area of <math>ABCO</math>. | ||
Line 27: | Line 30: | ||
Solving for the unknown, <math>EF=5</math>, therefore <math>DE+EF=4+5=\boxed{\textbf{(C)}\ 9}</math>. | Solving for the unknown, <math>EF=5</math>, therefore <math>DE+EF=4+5=\boxed{\textbf{(C)}\ 9}</math>. | ||
− | ==See Also== | + | ==Video Solution by OmegaLearn== |
+ | https://youtu.be/abSgjn4Qs34?t=1908 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | == See Also == | ||
{{AMC8 box|year=2005|num-b=12|num-a=14}} | {{AMC8 box|year=2005|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 20:46, 2 January 2023
Problem
The area of polygon is 52 with , and . What is ?
Solution
Notice that , so . Let be the intersection of the extensions of and , which makes rectangle . The area of the polygon is the area of subtracted from the area of .
Solving for the unknown, , therefore .
Video Solution by OmegaLearn
https://youtu.be/abSgjn4Qs34?t=1908
~ pi_is_3.14
See Also
2005 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.