Difference between revisions of "2020 AIME II Problems/Problem 15"
m (→Solution) |
m (→Solution 1) |
||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | + | Let <math>O</math> be the circumcenter of <math>\triangle ABC</math>; say <math>OT</math> intersects <math>BC</math> at <math>M</math>; draw segments <math>XM</math>, and <math>YM</math>. We have <math>MT=3\sqrt{15}</math>. | |
+ | |||
+ | [[File:Fanyuchen.png|250px|right]] | ||
+ | |||
+ | Since <math>\angle A=\angle CBT=\angle BCT</math>, we have <math>\cos A=\tfrac{11}{16}</math>. Notice that <math>AXTY</math> is cyclic, so <math>\angle XTY=180^{\circ}-A</math>, so <math>\cos XTY=-\cos A</math>, and the cosine law in <math>\triangle TXY</math> gives <cmath>1143-2XY^2=-\frac{11}{8}\cdot XT\cdot YT.</cmath> | ||
+ | |||
+ | Since <math>\triangle BMT \cong \triangle CMT</math>, we have <math>TM\perp BC</math>, and therefore quadrilaterals <math>BXTM</math> and <math>CYTM</math> are cyclic. Let <math>P</math> (resp. <math>Q</math>) be the midpoint of <math>BT</math> (resp. <math>CT</math>). So <math>P</math> (resp. <math>Q</math>) is the center of <math>(BXTM)</math> (resp. <math>CYTM</math>). Then <math>\theta=\angle ABC=\angle MTX</math> and <math>\phi=\angle ACB=\angle YTM</math>. So <math>\angle XPM=2\theta</math>, so<cmath>\frac{\frac{XM}{2}}{XP}=\sin \theta,</cmath>which yields <math>XM=2XP\sin \theta=BT(=CT)\sin \theta=TY</math>. Similarly we have <math>YM=XT</math>. | ||
+ | |||
+ | Ptolemy's theorem in <math>BXTM</math> gives <cmath>16TY=11TX+3\sqrt{15}BX,</cmath> while Pythagoras' theorem gives <math>BX^2+XT^2=16^2</math>. Similarly, Ptolemy's theorem in <math>YTMC</math> gives<cmath>16TX=11TY+3\sqrt{15}CY</cmath> while Pythagoras' theorem in <math>\triangle CYT</math> gives <math>CY^2+YT^2=16^2</math>. Solve this for <math>XT</math> and <math>TY</math> and substitute into the equation about <math>\cos XTY</math> to obtain the result <math>XY^2=\boxed{717}</math>. | ||
(Notice that <math>MXTY</math> is a parallelogram, which is an important theorem in Olympiad, and there are some other ways of computation under this observation.) | (Notice that <math>MXTY</math> is a parallelogram, which is an important theorem in Olympiad, and there are some other ways of computation under this observation.) |
Revision as of 15:55, 4 January 2023
Contents
[hide]Problem
Let be an acute scalene triangle with circumcircle . The tangents to at and intersect at . Let and be the projections of onto lines and , respectively. Suppose , , and . Find .
Solution 1
Let be the circumcenter of ; say intersects at ; draw segments , and . We have .
Since , we have . Notice that is cyclic, so , so , and the cosine law in gives
Since , we have , and therefore quadrilaterals and are cyclic. Let (resp. ) be the midpoint of (resp. ). So (resp. ) is the center of (resp. ). Then and . So , sowhich yields . Similarly we have .
Ptolemy's theorem in gives while Pythagoras' theorem gives . Similarly, Ptolemy's theorem in gives while Pythagoras' theorem in gives . Solve this for and and substitute into the equation about to obtain the result .
(Notice that is a parallelogram, which is an important theorem in Olympiad, and there are some other ways of computation under this observation.)
-Fanyuchen20020715
Solution 2 (Official MAA)
Let denote the midpoint of . The critical claim is that is the orthocenter of , which has the circle with diameter as its circumcircle. To see this, note that because , the quadrilateral is cyclic, it follows that implying that . Similarly, . In particular, is a parallelogram. Hence, by the Parallelogram Law, But . Therefore
Solution 3 (Law of Cosines)
Let be the orthocenter of .
Lemma 1: is the midpoint of .
Proof: Let be the midpoint of , and observe that and are cyclical. Define and , then note that: That implies that , , and . Thus and ; is indeed the same as , and we have proved lemma 1.
Since is cyclical, and this implies that is a paralelogram. By the Law of Cosines: We add all these equations to get: We have that and using our midpoints. Note that , so by the Pythagorean Theorem, it follows that . We were also given that , which we multiply by to use equation . Since , we have Therefore, . ~ MathLuis
Solution 4 (Similarity and median)
Using the Claim (below) we get
Corresponding sides of similar is so
– parallelogram.
The formula for median of triangle is
Claim
Let be an acute scalene triangle with circumcircle . The tangents to at and intersect at . Let be the projections of onto line . Let M be midpoint BC. Then triangle ABC is similar to triangle XTM.
Proof
the quadrilateral is cyclic.
vladimir.shelomovskii@gmail.com, vvsss
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.