Difference between revisions of "2023 AMC 8 Problems/Problem 13"
(→Solution 1) |
|||
Line 13: | Line 13: | ||
==Solution 1== | ==Solution 1== | ||
− | Knowing that there are <math>7</math> equally spaced water stations they are each located <math>\frac{d}{8}</math>, <math>\frac{2d}{8}</math>,… <math>\frac{7d}{8}</math> of the way from the start. Using the same logic for the <math>3</math> station we have <math>\frac{d}{3}</math> and <math>\frac{2d}{3}</math> for the repair stations. It is given that the 3rd water is <math>2</math> miles ahead of the <math>1</math>st repair station. So setting an equation we have <math>\frac{3d}{8} = \frac{d}{3} + 2</math> getting common denominators <math>\frac{9d}{24} = \frac{8d}{24} + 2</math> so then we have <math>d = \boxed{\text{(D)}48}</math> from this. | + | Knowing that there are <math>7</math> equally spaced water stations they are each located <math>\frac{d}{8}</math>, <math>\frac{2d}{8}</math>,… <math>\frac{7d}{8}</math> of the way from the start. Using the same logic for the <math>3</math> station we have <math>\frac{d}{3}</math> and <math>\frac{2d}{3}</math> for the repair stations. It is given that the 3rd water is <math>2</math> miles ahead of the <math>1</math>st repair station. So setting an equation we have <math>\frac{3d}{8} = \frac{d}{3} + 2</math> getting common denominators <math>\frac{9d}{24} = \frac{8d}{24} + 2</math> so then we have <math>d = \boxed{\text{(D)}~48}</math> from this. |
~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat | ~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat | ||
− | |||
==Solution 2 (answer choices)== | ==Solution 2 (answer choices)== |
Revision as of 10:26, 25 January 2023
Contents
[hide]Problem
Along the route of a bicycle race, 7 water stations are evenly spaced between the start and finish lines, as shown in the figure below. There are also 2 repair stations evenly spaced between the start and finish lines. The 3rd water station is located 2 miles after the 1st repair station. How long is the race in miles?
Solution 1
Knowing that there are equally spaced water stations they are each located , ,… of the way from the start. Using the same logic for the station we have and for the repair stations. It is given that the 3rd water is miles ahead of the st repair station. So setting an equation we have getting common denominators so then we have from this.
~apex304, SohumUttamchandani, wuwang2002, TaeKim, Cxrupptedpat
Solution 2 (answer choices)
Test all the answer choices, and find that the answer is
-claregu
Video Solution (Animated)
~Star League (https://starleague.us)
See Also
2023 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.