Difference between revisions of "2023 AMC 8 Problems/Problem 4"

(Problem)
(basically repeating sol 1)
Line 11: Line 11:
  
 
~MathFun1000 (minor edits apex304 and [[User:ILoveMath31415926535|ILoveMath31415926535]])
 
~MathFun1000 (minor edits apex304 and [[User:ILoveMath31415926535|ILoveMath31415926535]])
 
==Solution 2==
 
 
Fill out the entire grid to count that there are <math>\boxed{\text{(D)}3}</math> prime numbers
 
-apex304
 
  
 
==Video Solution by Magic Square==
 
==Video Solution by Magic Square==

Revision as of 14:31, 25 January 2023

Problem

The numbers from 1 to 49 are arranged in a spiral pattern on a square grid, beginning at the center. The first few numbers have been entered into the grid below. Consider the four numbers that will appear in the shaded squares, on the same diagonal as the number 7. How many of these four numbers are prime?


$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution 1

First, we fill out the entire grid. We find that the $4$ numbers are $39,19,23,47$. The numbers $19,23,$ and $47$ are prime, so there are $\boxed{\textbf{(D) }3}$ prime numbers.

~MathFun1000 (minor edits apex304 and ILoveMath31415926535)

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5392

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png