Difference between revisions of "2023 AMC 8 Problems/Problem 4"

(Problem)
Line 93: Line 93:
 
draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2));
 
draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2));
 
</asy>
 
</asy>
From the numbers that appear in the shaded squares, <math>\boxed{\textbf{(D)}\ 3}</math> of them are prime: <math>19,23,</math> and <math>47.</math>
+
From the four numbers that appear in the shaded squares, <math>\boxed{\textbf{(D)}\ 3}</math> of them are prime: <math>19,23,</math> and <math>47.</math>
  
 
~MathFun1000, MRENTHUSIASM
 
~MathFun1000, MRENTHUSIASM

Revision as of 03:19, 26 January 2023

Problem

The numbers from $1$ to $49$ are arranged in a spiral pattern on a square grid, beginning at the center. The first few numbers have been entered into the grid below. Consider the four numbers that will appear in the shaded squares, on the same diagonal as the number $7.$ How many of these four numbers are prime? [asy] /* Made by MRENTHUSIASM */ size(175);  void ds(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,mediumgrey); }  ds((0.5,4.5)); ds((1.5,3.5)); ds((3.5,1.5)); ds((4.5,0.5));  add(grid(7,7,grey+linewidth(1.25)));  int adj = 1; int curUp = 2; int curLeft = 4; int curDown = 6;  label("$1$",(3.5,3.5));  for (int len = 3; len<=3; len+=2) { 	for (int i=1; i<=len-1; ++i)     		{ 			label("$"+string(curUp)+"$",(3.5+adj,3.5-adj+i));     		label("$"+string(curLeft)+"$",(3.5+adj-i,3.5+adj));      		label("$"+string(curDown)+"$",(3.5-adj,3.5+adj-i));     		++curDown;     		++curLeft;     		++curUp; 		} 	++adj;     curUp = len^2 + 1;     curLeft = len^2 + len + 2;     curDown = len^2 + 2*len + 3; }  draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2)); [/asy] $\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ 4$

Solution

We fill out the grid, as shown below: [asy] /* Made by MRENTHUSIASM */ size(175);  void ds(pair p) { 	filldraw((0.5,0.5)+p--(-0.5,0.5)+p--(-0.5,-0.5)+p--(0.5,-0.5)+p--cycle,mediumgrey); }  ds((0.5,4.5)); ds((1.5,3.5)); ds((3.5,1.5)); ds((4.5,0.5));  add(grid(7,7,grey+linewidth(1.25)));  int adj = 1; int curUp = 2; int curLeft = 4; int curDown = 6; int curRight = 8;  label("$1$",(3.5,3.5));  for (int len = 3; len<=7; len+=2) { 	for (int i=1; i<=len-1; ++i)     		{ 			label("$"+string(curUp)+"$",(3.5+adj,3.5-adj+i));     		label("$"+string(curLeft)+"$",(3.5+adj-i,3.5+adj));      		label("$"+string(curDown)+"$",(3.5-adj,3.5+adj-i));     		label("$"+string(curRight)+"$",(3.5-adj+i,3.5-adj));     		++curDown;     		++curLeft;     		++curUp;     		++curRight; 		} 	++adj;     curUp = len^2 + 1;     curLeft = len^2 + len + 2;     curDown = len^2 + 2*len + 3;     curRight = len^2 + 3*len + 4; }  draw((4,4)--(3,4)--(3,3)--(5,3)--(5,5)--(2,5)--(2,2)--(6,2)--(6,6)--(1,6)--(1,1)--(7,1)--(7,7)--(0,7)--(0,0)--(7,0),linewidth(2)); [/asy] From the four numbers that appear in the shaded squares, $\boxed{\textbf{(D)}\ 3}$ of them are prime: $19,23,$ and $47.$

~MathFun1000, MRENTHUSIASM

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5392

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png