Difference between revisions of "2021 AMC 12B Problems/Problem 23"

(Solution 2)
(Video Solution Using Infinite Geometric Series)
 
(34 intermediate revisions by 10 users not shown)
Line 1: Line 1:
==Problem 23==
+
==Problem==
 
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin <math>i</math> is <math>2^{-i}</math> for <math>i=1,2,3,....</math> More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is <math>\frac pq,</math> where <math>p</math> and <math>q</math> are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins <math>3,17,</math> and <math>10.</math>) What is <math>p+q?</math>
 
Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin <math>i</math> is <math>2^{-i}</math> for <math>i=1,2,3,....</math> More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is <math>\frac pq,</math> where <math>p</math> and <math>q</math> are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins <math>3,17,</math> and <math>10.</math>) What is <math>p+q?</math>
  
 
<math>\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59</math>
 
<math>\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59</math>
  
==Solution==
+
==Solution 1==
 
"Evenly spaced" just means the bins form an arithmetic sequence.
 
"Evenly spaced" just means the bins form an arithmetic sequence.
  
Line 10: Line 10:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
6\sum_{x=2}^{\infty}\frac{x-1}{8^x} &= \frac{6}{8}\left[\frac{1}{8} + \frac{2}{8^2} + \frac{3}{8^3}\cdots\right]\
 
6\sum_{x=2}^{\infty}\frac{x-1}{8^x} &= \frac{6}{8}\left[\frac{1}{8} + \frac{2}{8^2} + \frac{3}{8^3}\cdots\right]\
&= \frac34\left[\left(\frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3}\right) + \left(\frac{1}{8^2} + \frac{1}{8^3} + \frac{1}{8^4}\right) + \cdots\right]\
+
&= \frac34\left[\left(\frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3}+\cdots \right) + \left(\frac{1}{8^2} + \frac{1}{8^3} + \frac{1}{8^4} + \cdots \right) + \cdots\right]\
&= \frac34\left[\frac17\cdot \left(1 + \frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3}\right)\right]\
+
&= \frac34\left[\frac17\cdot \left(1 + \frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3} + \cdots \right)\right]\
 
&= \frac34\cdot \frac{8}{49}\
 
&= \frac34\cdot \frac{8}{49}\
 
&= \frac{6}{49}
 
&= \frac{6}{49}
Line 17: Line 17:
 
The answer is <math>6+49=\boxed{\textbf{(A) }55}.</math>
 
The answer is <math>6+49=\boxed{\textbf{(A) }55}.</math>
  
 +
==Solution 2==
 +
As in solution 1, note that "evenly spaced" means the bins are in arithmetic sequence. We let the first bin be <math>a</math> and the common difference be <math>d</math>. Further note that each <math>(a, d)</math> pair uniquely determines a set of <math>3</math> bins.
  
==Solution 2==
+
We have <math>a\geq1</math> because the leftmost bin in the sequence can be any bin, and <math>d\geq1</math>, because the bins must be distinct.
 +
 
 +
This gives us the following sum for the probability:
 +
<cmath>\begin{align*} 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a-3d}
 +
&= 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a} \cdot 2^{-3d} \
 +
&= 6 \left( \sum_{a=1}^{\infty} 2^{-3a} \right) \left( \sum_{d=1}^{\infty} 2^{-3d} \right) \
 +
&= 6 \left( \sum_{a=1}^{\infty} 8^{-a} \right) \left( \sum_{d=1}^{\infty} 8^{-d} \right) \
 +
&= 6 \left( \frac{1}{7} \right) \left( \frac{1}{7} \right) \
 +
&= \frac{6}{49} .\end{align*}</cmath>
 +
Therefore the answer is <math>6 + 49 = \boxed{\textbf{(A) }55}</math>.
 +
 
 +
-Darren Yao
 +
 
 +
==Solution 3==
 +
This is a slightly messier variant of solution 2. If the first ball is in bin <math>i</math> and the second ball is in bin <math>j>i</math>, then the third ball is in bin <math>2j-i</math>. Thus the probability is
 +
<cmath>\begin{align*}
 +
6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-i}2^{-j}2^{-2j+i}&=6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-3j}\
 +
&=6\sum_{i=1}^{\infty}\left(\frac{2^{-3(i+1)}}{1-\tfrac{1}{8}}\right)\
 +
&=6\sum_{i=1}^\infty\frac{8}{7}\cdot2^{-3}\cdot2^{-3i}\
 +
&=\frac{6}{7}\sum_{i=1}^\infty2^{-3i}\
 +
&=\frac{6}{7}\cdot\frac{2^{-3}}{1-\tfrac18}\
 +
&=\frac{6}{49}.
 +
\end{align*}</cmath>
 +
Therefore the answer is <math>6 + 49 = \boxed{\textbf{(A) }55}</math>.
 +
 
 +
==Solution 4 (Table)==
 +
Based on the value of <math>n,</math> we construct the following table:
 +
<cmath>\begin{array}{c|c|c|c}
 +
& & & \ [-1.5ex]
 +
\textbf{Exactly }\boldsymbol{n}\textbf{ Spaces Apart} & \textbf{Bin \#s} & \textbf{Expression} & \textbf{Prob. of One Such Perm.} \ [1ex]
 +
\hline\hline 
 +
& & & \ [-1.5ex]
 +
n=1 & 1,2,3 & 2^{-1}\cdot2^{-2}\cdot2^{-3} & 2^{-6} \ [1ex]
 +
& 2,3,4 & 2^{-2}\cdot2^{-3}\cdot2^{-4} & 2^{-9} \ [1ex]
 +
& 3,4,5 & 2^{-3}\cdot2^{-4}\cdot2^{-5} & 2^{-12} \ [1ex]
 +
& 4,5,6 & 2^{-4}\cdot2^{-5}\cdot2^{-6} & 2^{-15} \ [1ex]
 +
& \cdots & \cdots & \cdots \ [1ex]
 +
\hline
 +
& & & \ [-1.5ex]
 +
n=2 & 1,3,5 & 2^{-1}\cdot2^{-3}\cdot2^{-5} & 2^{-9} \ [1ex]
 +
& 2,4,6 & 2^{-2}\cdot2^{-4}\cdot2^{-6} & 2^{-12} \ [1ex]
 +
& 3,5,7 & 2^{-3}\cdot2^{-5}\cdot2^{-7} & 2^{-15} \ [1ex]
 +
& 4,6,8 & 2^{-4}\cdot2^{-6}\cdot2^{-8} & 2^{-18} \ [1ex]
 +
& \cdots & \cdots & \cdots \ [1ex]
 +
\hline
 +
& & & \ [-1.5ex]
 +
n=3 & 1,4,7 & 2^{-1}\cdot2^{-4}\cdot2^{-7} & 2^{-12} \ [1ex]
 +
& 2,5,8 & 2^{-2}\cdot2^{-5}\cdot2^{-8} & 2^{-15} \ [1ex]
 +
& 3,6,9 & 2^{-3}\cdot2^{-6}\cdot2^{-9} & 2^{-18} \ [1ex]
 +
& 4,7,10 & 2^{-4}\cdot2^{-7}\cdot2^{-10} & 2^{-21} \ [1ex]
 +
& \cdots & \cdots & \cdots \ [1ex]
 +
\hline
 +
& & & \ [-1.5ex] 
 +
\cdots & \cdots & \cdots & \cdots \ [1ex]
 +
\end{array}</cmath>
 +
Since three balls have <math>3!=6</math> permutations, the requested probability is
 +
<cmath>\begin{align*}
 +
6\left(\sum_{k=0}^{\infty}2^{-6-3k}+\sum_{k=0}^{\infty}2^{-9-3k}+\sum_{k=0}^{\infty}2^{-12-3k}+\cdots\right)&=6\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}+2^{-9}\sum_{k=0}^{\infty}2^{-3k}+2^{-12}\sum_{k=0}^{\infty}2^{-3k}+\cdots\right) \
 +
&=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}+2^{-9}+2^{-12}+\cdots\right) \
 +
&=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(\sum_{k=0}^{\infty}2^{-6-3k}\right) \
 +
&=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}\right) \
 +
&=\frac{6}{1-2^{-3}}\cdot\frac{2^{-6}}{1-2^{-3}} \
 +
&=\frac{6}{49}
 +
\end{align*}</cmath>
 +
by infinite geometric series, from which the answer is <math>6+49=\boxed{\textbf{(A) }55}.</math>
 +
 
 +
~MRENTHUSIASM
 +
 
 +
== Video Solution==
 +
https://youtu.be/x16YUmd0OqY
 +
 
 +
~MathProblemSolvingSkills.com
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/_IvLCWSSDFs
 +
 
 +
~ pi_is_3.14
 +
 
 +
== Video Solution Using Infinite Geometric Series ==
 +
https://youtu.be/3B-3_nOTIu4
 +
 
 +
~hippopotamus1
  
Let us first consider the cases where the balls are in bins <math>1, 2,</math> and <math>3</math>. The probability for the first ball is <math>\frac{1}{2}</math>, the probability for the second ball is <math>\frac{1}{4}</math> and the probability for the third ball is <math>\frac{1}{8}</math>. There are <math>3!</math> ways to orient which ball is in which bin since there are 3 colors. Multiply all of them to get <math>3! * \frac{1}{2} * \frac{1}{4} * \frac{1}{8} = \frac {3}{32}</math>. Next consider the case where the balls are in bins <math>1,3, and 5</math>. The probability in this case turns out to be <math>\frac{3}{256}</math> by similar logic. We can see every time we increase the distance between 2 consecutive bins by <math>1</math>, the probability reduces by a factor of <math>8</math>, which means the total probability of the given condition for when a ball is in bin <math>1</math> is <math>\frac{3}{32} * (1 + \frac{1}{8} + \frac{1}{8^2} + …) = \frac{3}{28}</math>. Let the balls now be in bins <math>2, 3, and 4</math>. Using the same technique as we previously used, we get the probability for this case is \frac {3}{256}<math>. (Use the probability for each bin, multiply them and the number of ways to orient the balls). We see that this will end up the same way showing that the total probability that the condition holds when one ball is in bin </math>2<math> is </math>\frac{3}{256} * (1 + \frac{1}{8} + \frac{1}{8^2} + …) = \frac{3}{224}$.
+
==See Also==
 +
{{AMC12 box|year=2021|ab=B|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Latest revision as of 02:25, 28 January 2023

Problem

Three balls are randomly and independantly tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $i$ is $2^{-i}$ for $i=1,2,3,....$ More than one ball is allowed in each bin. The probability that the balls end up evenly spaced in distinct bins is $\frac pq,$ where $p$ and $q$ are relatively prime positive integers. (For example, the balls are evenly spaced if they are tossed into bins $3,17,$ and $10.$) What is $p+q?$

$\textbf{(A) }55 \qquad \textbf{(B) }56 \qquad \textbf{(C) }57\qquad \textbf{(D) }58 \qquad \textbf{(E) }59$

Solution 1

"Evenly spaced" just means the bins form an arithmetic sequence.

Suppose the middle bin in the sequence is $x$. There are $x-1$ different possibilities for the first bin, and these two bins uniquely determine the final bin. Now, the probability that these $3$ bins are chosen is $6\cdot 2^{-3x} = 6\cdot \frac{1}{8^x}$, so the probability $x$ is the middle bin is $6\cdot\frac{x-1}{8^x}$. Then, we want the sum \begin{align*} 6\sum_{x=2}^{\infty}\frac{x-1}{8^x} &= \frac{6}{8}\left[\frac{1}{8} + \frac{2}{8^2} + \frac{3}{8^3}\cdots\right]\\ &= \frac34\left[\left(\frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3}+\cdots \right) + \left(\frac{1}{8^2} + \frac{1}{8^3} + \frac{1}{8^4} + \cdots \right) + \cdots\right]\\ &= \frac34\left[\frac17\cdot \left(1 + \frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3} + \cdots \right)\right]\\ &= \frac34\cdot \frac{8}{49}\\ &= \frac{6}{49} \end{align*} The answer is $6+49=\boxed{\textbf{(A) }55}.$

Solution 2

As in solution 1, note that "evenly spaced" means the bins are in arithmetic sequence. We let the first bin be $a$ and the common difference be $d$. Further note that each $(a, d)$ pair uniquely determines a set of $3$ bins.

We have $a\geq1$ because the leftmost bin in the sequence can be any bin, and $d\geq1$, because the bins must be distinct.

This gives us the following sum for the probability: \begin{align*} 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a-3d} &= 6 \sum_{a=1}^{\infty} \sum_{d=1}^{\infty} 2^{-3a} \cdot 2^{-3d} \\ &= 6 \left( \sum_{a=1}^{\infty} 2^{-3a} \right) \left( \sum_{d=1}^{\infty} 2^{-3d} \right) \\ &= 6 \left( \sum_{a=1}^{\infty} 8^{-a} \right) \left( \sum_{d=1}^{\infty} 8^{-d} \right) \\ &= 6 \left( \frac{1}{7} \right) \left( \frac{1}{7} \right) \\ &= \frac{6}{49} .\end{align*} Therefore the answer is $6 + 49 = \boxed{\textbf{(A) }55}$.

-Darren Yao

Solution 3

This is a slightly messier variant of solution 2. If the first ball is in bin $i$ and the second ball is in bin $j>i$, then the third ball is in bin $2j-i$. Thus the probability is \begin{align*} 6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-i}2^{-j}2^{-2j+i}&=6\sum_{i=1}^{\infty}\sum_{j=i+1}^\infty2^{-3j}\\ &=6\sum_{i=1}^{\infty}\left(\frac{2^{-3(i+1)}}{1-\tfrac{1}{8}}\right)\\ &=6\sum_{i=1}^\infty\frac{8}{7}\cdot2^{-3}\cdot2^{-3i}\\ &=\frac{6}{7}\sum_{i=1}^\infty2^{-3i}\\ &=\frac{6}{7}\cdot\frac{2^{-3}}{1-\tfrac18}\\ &=\frac{6}{49}. \end{align*} Therefore the answer is $6 + 49 = \boxed{\textbf{(A) }55}$.

Solution 4 (Table)

Based on the value of $n,$ we construct the following table: \[\begin{array}{c|c|c|c}  & & & \\ [-1.5ex] \textbf{Exactly }\boldsymbol{n}\textbf{ Spaces Apart} & \textbf{Bin \#s} & \textbf{Expression} & \textbf{Prob. of One Such Perm.} \\ [1ex]  \hline\hline   & & & \\ [-1.5ex]  n=1 & 1,2,3 & 2^{-1}\cdot2^{-2}\cdot2^{-3} & 2^{-6} \\ [1ex]   & 2,3,4 & 2^{-2}\cdot2^{-3}\cdot2^{-4} & 2^{-9} \\ [1ex]   & 3,4,5 & 2^{-3}\cdot2^{-4}\cdot2^{-5} & 2^{-12} \\ [1ex]   & 4,5,6 & 2^{-4}\cdot2^{-5}\cdot2^{-6} & 2^{-15} \\ [1ex]   & \cdots & \cdots & \cdots \\ [1ex]  \hline  & & & \\ [-1.5ex]  n=2 & 1,3,5 & 2^{-1}\cdot2^{-3}\cdot2^{-5} & 2^{-9} \\ [1ex]   & 2,4,6 & 2^{-2}\cdot2^{-4}\cdot2^{-6} & 2^{-12} \\ [1ex]   & 3,5,7 & 2^{-3}\cdot2^{-5}\cdot2^{-7} & 2^{-15} \\ [1ex]   & 4,6,8 & 2^{-4}\cdot2^{-6}\cdot2^{-8} & 2^{-18} \\ [1ex]   & \cdots & \cdots & \cdots \\ [1ex]  \hline  & & & \\ [-1.5ex]  n=3 & 1,4,7 & 2^{-1}\cdot2^{-4}\cdot2^{-7} & 2^{-12} \\ [1ex]   & 2,5,8 & 2^{-2}\cdot2^{-5}\cdot2^{-8} & 2^{-15} \\ [1ex]   & 3,6,9 & 2^{-3}\cdot2^{-6}\cdot2^{-9} & 2^{-18} \\ [1ex]  & 4,7,10 & 2^{-4}\cdot2^{-7}\cdot2^{-10} & 2^{-21} \\ [1ex]  & \cdots & \cdots & \cdots \\ [1ex]  \hline   & & & \\ [-1.5ex]    \cdots & \cdots & \cdots & \cdots \\ [1ex] \end{array}\] Since three balls have $3!=6$ permutations, the requested probability is \begin{align*} 6\left(\sum_{k=0}^{\infty}2^{-6-3k}+\sum_{k=0}^{\infty}2^{-9-3k}+\sum_{k=0}^{\infty}2^{-12-3k}+\cdots\right)&=6\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}+2^{-9}\sum_{k=0}^{\infty}2^{-3k}+2^{-12}\sum_{k=0}^{\infty}2^{-3k}+\cdots\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}+2^{-9}+2^{-12}+\cdots\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(\sum_{k=0}^{\infty}2^{-6-3k}\right) \\ &=\left(6\sum_{k=0}^{\infty}2^{-3k}\right)\cdot\left(2^{-6}\sum_{k=0}^{\infty}2^{-3k}\right) \\ &=\frac{6}{1-2^{-3}}\cdot\frac{2^{-6}}{1-2^{-3}} \\ &=\frac{6}{49} \end{align*} by infinite geometric series, from which the answer is $6+49=\boxed{\textbf{(A) }55}.$

~MRENTHUSIASM

Video Solution

https://youtu.be/x16YUmd0OqY

~MathProblemSolvingSkills.com

Video Solution by OmegaLearn

https://youtu.be/_IvLCWSSDFs

~ pi_is_3.14

Video Solution Using Infinite Geometric Series

https://youtu.be/3B-3_nOTIu4

~hippopotamus1

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png