Difference between revisions of "1984 AIME Problems/Problem 5"
Math is fun (talk | contribs) m (changed solution4 a bit better?) |
|||
Line 13: | Line 13: | ||
== Solution 4 == | == Solution 4 == | ||
− | We can change everything to a common base, like so: <math>\log_8{a} + \log_8{b^3} = 5,</math> <math>\log_8{b} + \log_8{a^3} = 7.</math> We set the value of <math>\log_8{a}</math> to <math>x</math>, and the value of <math>\log_8{b}</math> to <math>y.</math> Now we have a system of linear equations: <cmath>x + 3y = 5,</cmath> <cmath>y + 3x = 7.</cmath> | + | We can change everything to a common base, like so: <math>\log_8{a} + \log_8{b^3} = 5,</math> <math>\log_8{b} + \log_8{a^3} = 7.</math> We set the value of <math>\log_8{a}</math> to <math>x</math>, and the value of <math>\log_8{b}</math> to <math>y.</math> Now we have a system of linear equations: <cmath>x + 3y = 5,</cmath> <cmath>y + 3x = 7.</cmath> Now add the two equations together then simplify, we'll get <math>x+y=3</math>. So <math>\log_8{ab} = \log_8{a} + \log_8{b} = 3</math>, <math>ab = 8^3 = \boxed{512}</math> |
== Solution 5 == | == Solution 5 == |
Revision as of 11:31, 28 January 2023
Contents
[hide]Problem
Determine the value of if and .
Solution 1
Use the change of base formula to see that ; combine denominators to find that . Doing the same thing with the second equation yields that . This means that and that . If we multiply the two equations together, we get that , so taking the fourth root of that, .
Solution 2
We can simplify our expressions by changing everything to a common base and by pulling exponents out of the logarithms. The given equations then become and . Adding the equations and factoring, we get . Rearranging we see that . Again, we pull exponents out of our logarithms to get . This means that . The left-hand side can be interpreted as a base-2 logarithm, giving us .
Solution 3
This solution is very similar to the above two, but it utilizes the well-known fact that Thus, Similarly, Adding these two equations, we have .
Solution 4
We can change everything to a common base, like so: We set the value of to , and the value of to Now we have a system of linear equations: Now add the two equations together then simplify, we'll get . So ,
Solution 5
Add the two equations to get . This can be simplified with the log property . Using this, we get . Now let and . Converting to exponents, we get and . Sub in the to get . So now we have that and which gives , . This means so
Solution 6
Add the equations and use the facts that and to get Now use the change of base identity with base as 2: Which gives: Solving gives,
Solution 7
By properties of logarithms, we know that .
Using the fact that , we get .
Similarly, we know that .
From these two equations, we get and .
Multiply the two equations to get . Solving, we get that .
Solution 8
and adding both we get then we see is 3/2 times putting as x we get x+3x=12 so x=3 and = 3 so ab= = ~ math_comb01
See also
1984 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |