Difference between revisions of "1990 AIME Problems/Problem 15"
(→Solution: solution by towersfreak2006) |
|||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | <math> | + | Set <math>S = (x + y)</math> and <math>P = xy</math>. Then the relationship |
− | < | + | <cmath>(ax^n + by^n)(x + y) = (ax^{n + 1} + by^{n + 1}) + (xy)(ax^{n - 1} + by^{n - 1})</cmath> |
− | + | can be exploited: | |
− | xy= | + | <cmath>\begin{eqnarray*}(ax^2 + by^2)(x + y) & = & (ax^3 + by^3) + (xy)(ax + by) \\ |
+ | (ax^3 + by^3)(x + y) & = & (ax^4 + by^4) + (xy)(ax^2 + by^2)\end{eqnarray*}</cmath> | ||
− | + | Therefore: | |
− | < | + | <cmath>\begin{eqnarray*}7S & = & 16 + 3P \\ |
+ | 16S & = & 42 + 7P\end{eqnarray*}</cmath> | ||
− | <math> | + | Consequently, <math>S = - 14</math> and <math>P = - 38</math>. Finally: |
− | < | + | <cmath>\begin{eqnarray*}(ax^4 + by^4)(x + y) & = & (ax^5 + by^5) + (xy)(ax^3 + by^3) \\ |
− | + | (42)(S) & = & (ax^5 + by^5) + (P)(16) \\ | |
− | + | (42)( - 14) & = & (ax^5 + by^5) + ( - 38)(16) \\ | |
− | + | ax^5 + by^5 & = & \boxed{20}\end{eqnarray*}</cmath> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == | ||
{{AIME box|year=1990|num-b=14|after=Last question}} | {{AIME box|year=1990|num-b=14|after=Last question}} |
Revision as of 20:42, 26 October 2007
Problem
Find if the real numbers , , , and satisfy the equations
Solution
Set and . Then the relationship
can be exploited:
Therefore:
Consequently, and . Finally:
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |