Difference between revisions of "2023 AIME I Problems/Problem 11"
(→Solution 2) |
(→Solution 2) |
||
Line 41: | Line 41: | ||
<math>\textbf{Case 5: (5,6)}</math> | <math>\textbf{Case 5: (5,6)}</math> | ||
− | + | ||
+ | Again following the patterns we have already created in our previous cases, for the numbers 1-4 we have <math>4 \choose {0}</math> + <math>3 \choose {1}</math> + <math>2 \choose {2}</math> = 5 choices and for the numbers 5-10 we have the same <math>4 \choose {0}</math> + <math>3 \choose {1}</math> + <math>2 \choose {2}</math> = 5 choices. <math>5\cdot5</math> = <math>\textbf{25}</math> combinations in all. | ||
<math>\textbf{Rest of the cases}</math> | <math>\textbf{Rest of the cases}</math> | ||
+ | |||
By symmetry, the case with (6,7) will act the same as case 4 with (4,5). This goes the same for (7,8) and case 3, (8.9) and case 2, and (9,10) and case 1. | By symmetry, the case with (6,7) will act the same as case 4 with (4,5). This goes the same for (7,8) and case 3, (8.9) and case 2, and (9,10) and case 1. | ||
Revision as of 22:52, 8 February 2023
Find the number of subsets of that contain exactly one pair of consecutive integers. Examples of such subsets are and .
Contents
[hide]Solution 1 (minimal casework)
Define to be the number of subsets of that have consecutive element pairs, and to be the number of subsets that have consecutive pair.
Using casework on where the consecutive element pair is, it is easy to see that
We see that , , and . This is because if the element is included in our subset, then there are possibilities for the rest of the elements (because cannot be used), and otherwise there are possibilities. Thus, by induction, is the th Fibonacci number.
This means that .
~mathboy100
Solution 2
We can solve this problem using casework, with one case for each possible pair of consecutive numbers.
If we have (1,2) as our pair, we are left with the numbers from 3-10 as elements that can be added to our subset. So, we must compute how many ways we can pick these numbers so that the set has no consecutive numbers other than (1,2). Our first option is to pick no more numbers, giving us . We can also pick one number, giving us because 3 cannot be picked. Another choice is to pick two numbers and in order to make sure they are not consecutive we must fix one number in between them, giving us . This pattern continues for each amount of numbers, yielding for 3 numbers and for four numbers. Adding these up, we have + + + + = .
If we have (2,3) as our pair, everything works the same as with (1,2), because 1 is still unusable as it is consecutive with 2. The only difference is we now have only 4-10 to work with. Using the same pattern as before, we have + + + = .
This case remains pretty much the same except we now have an option of whether or not to include 1. If we want to represent this like we have with our other choices, we would say for choosing no numbers and for choosing 1, leaving us with + = 2 choices (either including the number 1 in our subset or not including it). As far as the numbers from 5-10, our pattern from previous cases still holds. We have + + + = 13. With 2 choices on one side and 13 choices on the other side, we have = combinations in all.
Following the patterns we have already created in our previous cases, for the numbers 1-3 we have + = 3 choices (1, 2, or neither) and for the numbers 6-10 we have + + = 8 choices. With 3 choices on one side and 8 choices on the other side, we have = combinations in all.
Again following the patterns we have already created in our previous cases, for the numbers 1-4 we have + + = 5 choices and for the numbers 5-10 we have the same + + = 5 choices. = combinations in all.
By symmetry, the case with (6,7) will act the same as case 4 with (4,5). This goes the same for (7,8) and case 3, (8.9) and case 2, and (9,10) and case 1.
Now, we simply add up all of the possibilities for each case to get our final answer. 34 + 21 + 26 + 24 + 25 + 24 + 26 + 21 + 34 =
-Algebraik
Solution 3 (double recursive equations)
Denote by the number of subsets of a set that consists of consecutive integers, such that each subset contains exactly one pair of consecutive integers.
Denote by the number of subsets of a set that consists of consecutive integers, such that each subset does not contain any consecutive integers.
Denote by the smallest number in set .
First, we compute .
Consider . We do casework analysis.
Case 1: A subset does not contain .
The number of subsets that has exactly one pair of consecutive integers is .
Case 2: A subset contains but does not contain .
The number of subsets that has exactly one pair of consecutive integers is .
Case 3: A subset contains and .
To have exactly one pair of consecutive integers, this subset cannot have , and cannot have consecutive integers in .
Thus, the number of subsets that has exactly one pair of consecutive integers is .
Therefore, for ,
For , we have . For , we have .
Second, we compute .
Consider . We do casework analysis.
Case 1: A subset does not contain .
The number of subsets that has no consecutive integers is .
Case 2: A subset contains .
To avoid having consecutive integers, the subset cannot have .
Thus, the number of subsets that has no consecutive integers is .
Therefore, for ,
For , we have . For , we have .
By solving the recursive equations above, we get .
~ Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 4
Let's consider all cases:
Case 1: Our consecutive pair is (1,2).
Then, let's make subcases:
Case 1.1: We have 0 other numbers in our set. There is way to do this.
Case 1.2: We have 1 other number in our set. Let's say that this number is . We then can say that , with the restriction that . Then, we can write (since we have a total of 8 spots for remaining numbers: 3, 4, 5, 6, 7, 8, 9, 10). To remove the restriction on x_a, we can write , where . We then can use stars and bars: .
Case 1.3: We have 2 numbers in our set. This is similar, so I won't go through the same process. . . We can use stars and bars: . Case 1.4: We have 3 numbers in our set. . Stars and bars: .
Case 1.4: We have 4 numbers in our set. . Stars and bars: .
Adding all subcases, we get .
Case 2: Our consecutive pair is (8,9).
We use symmetry to find that there is exactly 1 case for (8,9) that matches with (1,2). This also has cases.
Case 3: Our consecutive pair is (2,3). The value is This is left as an exercise to the reader (but I can write it if you'd like).
Case 4: Our consecutive pair is (7,8). The value is . This is left as an exercise to the reader (but I can write it if you'd like).
- I will finish later.
hia2020
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.