Difference between revisions of "1956 AHSME Problems/Problem 1"

(1956 AHSME Problem #1)
(See Also)
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==1956 AHSME Problem #1==
+
==Problem #1==
  
The value of <math>x + x(x^x)</math> when <math>x = 2</math> is:
+
The value of <math>x + x(x^x)</math> when <math>x = 2</math> is:  
  
<math>(A) 10</math>  <math>(B) 16</math> <math>(C) 18</math> <math>(D) 36</math> <math>(E) 64</math>
+
 
 +
<math>\textbf{(A)}\ 10 \qquad\textbf{(B)}\ 16 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 36 \qquad\textbf{(E)}\ 64 </math>
  
 
== Solution ==
 
== Solution ==
 +
 +
Simple substitution yields
 +
<cmath>2 + 2(2^2) = 2 + 2(4) = 10</cmath>
 +
 +
Therefore, the answer is <math>\fbox{(A) 10}</math>
 +
 +
 +
==See Also==
 +
 +
{{AHSME 50p box|year=1956|before=First Problem|num-a=2}}
 +
 +
{{MAA Notice}}

Latest revision as of 15:54, 14 March 2023

Problem #1

The value of $x + x(x^x)$ when $x = 2$ is:


$\textbf{(A)}\ 10 \qquad\textbf{(B)}\ 16 \qquad\textbf{(C)}\ 18 \qquad\textbf{(D)}\ 36 \qquad\textbf{(E)}\ 64$

Solution

Simple substitution yields \[2 + 2(2^2) = 2 + 2(4) = 10\]

Therefore, the answer is $\fbox{(A) 10}$


See Also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png