Difference between revisions of "2000 AIME I Problems/Problem 8"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
A container in the shape of a right circular cone is 12 inches tall and its base has a 5-inch radius. The liquid that is sealed inside is 9 inches deep when the cone is held with its point down and its base horizontal. When the liquid is held with its point up and its base horizontal, the liquid is <math>m - n\sqrt [3]{p},</math> where <math>m,</math> <math>n,</math> and <math>p</math> are positive integers and <math>p</math> is not divisible by the cube of any prime number. Find <math>m + n + p</math>.
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[2000 AIME I Problems]]
+
{{AIME box|year=2000|n=I|num-b=7|num-a=9}}

Revision as of 18:30, 11 November 2007

Problem

A container in the shape of a right circular cone is 12 inches tall and its base has a 5-inch radius. The liquid that is sealed inside is 9 inches deep when the cone is held with its point down and its base horizontal. When the liquid is held with its point up and its base horizontal, the liquid is $m - n\sqrt [3]{p},$ where $m,$ $n,$ and $p$ are positive integers and $p$ is not divisible by the cube of any prime number. Find $m + n + p$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions