Difference between revisions of "2014 AMC 8 Problems/Problem 18"

(Solution 1)
(Video Solution)
(15 intermediate revisions by 9 users not shown)
Line 2: Line 2:
 
Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely?
 
Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely?
  
<math> \textbf{(A) }\text{all 4 are boys}\ \textbf{(B) }\text{all 4 are girls}\ \textbf{(C) }\text{2 are girls and 2 are boys}\ \textbf{(D) }\text{3 are of one gender and 1 is of the other gender}\ \textbf{(E) }\text{all of these outcomes are equally likely} </math>
+
(A) all 4 are boys
 +
(B) all 4 are girls
 +
(C) 2 are girls and 2 are boys
 +
(D) 3 are of one gender and 1 is of the other gender
 +
(E) all of these outcomes are equally likely
  
 
==Solution 1==
 
==Solution 1==
 
We'll just start by breaking cases down. The probability of A occurring is <math>\left(\frac{1}{2}\right)^4 = \frac{1}{16}</math>. The probability of B occurring is <math>\left(\frac{1}{2}\right)^4 = \frac{1}{16}</math>.
 
We'll just start by breaking cases down. The probability of A occurring is <math>\left(\frac{1}{2}\right)^4 = \frac{1}{16}</math>. The probability of B occurring is <math>\left(\frac{1}{2}\right)^4 = \frac{1}{16}</math>.
  
The probability of C occurring is <math>\dbinom{4}{2}\cdot \left(\frac{1}{2}\right)^4 = \frac{3}{8}</math>, because we need to choose 2 of the 4 children to be girls.  
+
The probability of C occurring is <math>\dbinom{4}{2}\cdot \left(\frac{1}{2}\right)^4 = \frac{3}{8}</math>, because we need to choose 2 of the 4 slots to be girls.  
  
For D, there are two possible cases, 3 girls and 1 boy or 3 boys and 1 girl. The probability of the first case is <math>\dbinom{4}{1}\cdot\left(\frac{1}{2}\right)^4 = \frac{1}{4}</math> because we need to choose 1 of the 4 children to be a boy. However, the second case has the same probability because we are choosing 1 of the 4 children to be a girl, so the total probability is <math>\frac{1}{4} \cdot 2 = \frac{1}{2}</math>.
+
For D, there are two possible cases, 3 girls and 1 boy or 3 boys and 1 girl. The probability of the first case is <math>\dbinom{4}{1}\cdot\left(\frac{1}{2}\right)^4 = \frac{1}{4}</math> because we need to choose 1 of the 4 slots to be a boy. However, the second case has the same probability because we are choosing 1 of the 4 children to be a girl, so the total probability is <math>\frac{1}{4} \cdot 2 = \frac{1}{2}</math>.
  
  
So out of the four fractions, C is the largest. So our answer is <math>\boxed{\text{(C)}}.</math>
+
So out of the four fractions, D is the largest. So our answer is <math>\boxed{\text{(D)}}.</math>
 +
 
 +
==Video Solution (CREATIVE THINKING)==
 +
https://youtu.be/erCpR2wX-78
 +
 
 +
~Education, the Study of Everything
 +
 
 +
 
 +
 
 +
==Video Solution==
 +
https://youtu.be/3bF8BAvg0uY ~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2014|num-b=17|num-a=19}}
 
{{AMC8 box|year=2014|num-b=17|num-a=19}}
 +
 +
[[Category:Introductory Probability Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:20, 2 July 2023

Problem

Four children were born at City Hospital yesterday. Assume each child is equally likely to be a boy or a girl. Which of the following outcomes is most likely?

(A) all 4 are boys (B) all 4 are girls (C) 2 are girls and 2 are boys (D) 3 are of one gender and 1 is of the other gender (E) all of these outcomes are equally likely

Solution 1

We'll just start by breaking cases down. The probability of A occurring is $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$. The probability of B occurring is $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$.

The probability of C occurring is $\dbinom{4}{2}\cdot \left(\frac{1}{2}\right)^4 = \frac{3}{8}$, because we need to choose 2 of the 4 slots to be girls.

For D, there are two possible cases, 3 girls and 1 boy or 3 boys and 1 girl. The probability of the first case is $\dbinom{4}{1}\cdot\left(\frac{1}{2}\right)^4 = \frac{1}{4}$ because we need to choose 1 of the 4 slots to be a boy. However, the second case has the same probability because we are choosing 1 of the 4 children to be a girl, so the total probability is $\frac{1}{4} \cdot 2 = \frac{1}{2}$.


So out of the four fractions, D is the largest. So our answer is $\boxed{\text{(D)}}.$

Video Solution (CREATIVE THINKING)

https://youtu.be/erCpR2wX-78

~Education, the Study of Everything


Video Solution

https://youtu.be/3bF8BAvg0uY ~savannahsolver

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png