Difference between revisions of "2004 AMC 12A Problems/Problem 19"

(Asymptote and Solution)
 
(Video solution by Punxsutawney Phil)
(23 intermediate revisions by 15 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2004 AMC 12A Problems|2004 AMC 12A #19]] and [[2004 AMC 10A Problems|2004 AMC 10A #23]]}}
 +
 
== Problem 19 ==
 
== Problem 19 ==
 
Circles <math>A, B</math> and <math>C</math> are externally tangent to each other, and internally tangent to circle <math>D</math>. Circles <math>B</math> and <math>C</math> are congruent. Circle <math>A</math> has radius <math>1</math> and passes through the center of <math>D</math>. What is the radius of circle <math>B</math>?
 
Circles <math>A, B</math> and <math>C</math> are externally tangent to each other, and internally tangent to circle <math>D</math>. Circles <math>B</math> and <math>C</math> are congruent. Circle <math>A</math> has radius <math>1</math> and passes through the center of <math>D</math>. What is the radius of circle <math>B</math>?
  
<math>\text {(A)} \frac23 \qquad \text {(B)} \frac {\sqrt3}{2} \qquad \text {(C)}\frac78 \qquad \text {(D)}\frac89 \qquad \text {(E)}\frac {1 + \sqrt3}{3}</math>
+
<center><asy>
 +
unitsize(15mm);
 +
pair A=(-1,0),B=(2/3,8/9),C=(2/3,-8/9),D=(0,0);
 +
 
 +
draw(Circle(D,2));
 +
draw(Circle(A,1));
 +
draw(Circle(B,8/9));
 +
draw(Circle(C,8/9));
 +
 
 +
label("\(A\)", A);
 +
label("\(B\)", B);
 +
label("\(C\)", C);
 +
label("\(D\)", (-1.2,1.8));
 +
</asy></center>
 +
 
 +
<math>\text{(A) } \frac23 \qquad \text{(B) } \frac {\sqrt3}{2} \qquad \text{(C) } \frac78 \qquad \text{(D) } \frac89 \qquad \text{(E) } \frac {1 + \sqrt3}{3}</math>
 +
 
 +
==Video solution by Punxsutawney Phil==
 +
https://www.youtube.com/watch?v=4-lbEZkFJdc
 +
 
 +
== Solution 1 ==
  
==Solution==
 
 
<asy>
 
<asy>
unitsize(20mm);
+
import graph;
 +
size(400);
 +
defaultpen(fontsize(10));
 +
pair OA=(-1,0),OB=(2/3,8/9),OC=(2/3,-8/9),OD=(0,0),E=(2/3,0);
 +
real t = 2.5;
 +
pair OA1=(-2+2*t,0),OB1=(4/3+2*t,16/9),OC1=(4/3+2*t,-16/9),OD1=(0+2*t,0),E1=(4/3+2*t,0);
 +
draw(Circle(OD,2));
 +
draw(Circle(OA,1));
 +
draw(Circle(OB,8/9));
 +
draw(Circle(OC,8/9));
 +
draw(OA--OB--OC--cycle);
 +
draw(OD--OB--OB+(OB-OD)*4/5);
 +
draw(OA--E);
 +
label("$O_{A}$",OA,(-1,0));
 +
label("$O_{B}$",OB,(-1,1));
 +
label("$O_{C}$",OC,(-1,-1));
 +
label("$O_{D}$",OD,(-1,-1));
 +
label("$E$",E,(0.5,-1));
 +
label("$r$",OB+(OB-OD)*2/5,(-0.5,1));
 +
label("$r$",(1*OA+3*OB)/4,(-0.5,1));
 +
dot(OA^^OB^^OC^^OD^^E);
 +
draw(OA1--OB1--OC1--cycle);
 +
draw(OD1--OB1);
 +
draw(OA1--E1);
 +
label("$O_{A}$",OA1,(-1,0));
 +
label("$O_{B}$",OB1,(1,1));
 +
label("$O_{C}$",OC1,(1,-1));
 +
label("$O_{D}$",OD1,(0,-1));
 +
label("$E$",E1,(1,0));
 +
label("$1+r$",(OA1+OB1)/2,(-0.5,1));
 +
label("$r$",(E1+OB1)/2,(1,0));
 +
label("$r$",(E1+OC1)/2,(1,0));
 +
label("$2-r$",(OB1+OD1)/2,(-1,0));
 +
label("$1$",(OA1+OD1)/2,(0,-1));
 +
label("$x$",(E1+OD1)/2,(0,-1));
 +
dot(OA1^^OB1^^OC1^^OD1^^E1);
 +
</asy>
 +
 
 +
Let <math>O_{i}</math> be the center of circle <math>i</math> for all <math>i \in \{A,B,C,D\}</math> and let <math>E</math> be the tangent point of <math>B,C</math>. Since the radius of <math>D</math> is the diameter of <math>A</math>, the radius of <math>D</math> is <math>2</math>.
 +
 
 +
 
 +
Let the radius of <math>B,C</math> be <math>r</math> and let <math>O_{D}E = x</math>. If we connect <math>O_{A},O_{B},O_{C}</math>, we get an [[isosceles triangle]] with lengths <math>1 + r, 2r</math>.
 +
 
 +
Then right triangle <math>O_{D}O_{B}O_{E}</math> has legs <math>r, x</math> and [[hypotenuse]] <math>2-r</math>. Solving for <math>x</math>, we get <math>x^2 = (2-r)^2 - r^2 \Longrightarrow x = \sqrt{4-4r}</math>.
 +
 
 +
Also, right triangle <math>O_{A}O_{B}O_{E}</math> has legs <math>r, 1+x</math>, and hypotenuse <math>1+r</math>. Solving,
 +
 
 +
<cmath>\begin{eqnarray*}
 +
r^2 + (1+\sqrt{4-4r})^2 &=& (1+r)^2\\
 +
1+4-4r+2\sqrt{4-4r}&=& 2r + 1\\
 +
1-r &=& \left(\frac{6r-4}{4}\right)^2\\
 +
\frac{9}{4}r^2-2r&=& 0\\
 +
r &=& \frac 89
 +
\end{eqnarray*}</cmath>
 +
 +
So the answer is <math>\boxed{\mathrm{(D)}\ \frac{8}{9}}</math>.
 +
 
 +
== Solution 2 ==
 +
 
 +
<center><asy>
 +
unitsize(15mm);
 
pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3);
 
pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3);
  
Line 19: Line 100:
 
dot(A);dot(B);dot(C);dot(D);dot(E);
 
dot(A);dot(B);dot(C);dot(D);dot(E);
  
label("\(D\)", D,N);
+
label("\(D\)", D,NW);
 
label("\(A\)", A,N);
 
label("\(A\)", A,N);
 
label("\(B\)", B,W);
 
label("\(B\)", B,W);
 
label("\(C\)", C,E);
 
label("\(C\)", C,E);
label("\(E\)", E,S);
+
label("\(E\)", E,SE);
 
label("\(1\)",(-.4,.7));
 
label("\(1\)",(-.4,.7));
label("\(1\)",(0,.5),E);
+
label("\(1\)",(0,0.5),W);
 
label("\(r\)", (-.8,-.1));
 
label("\(r\)", (-.8,-.1));
 
label("\(r\)", (-4/9,-2/3),S);
 
label("\(r\)", (-4/9,-2/3),S);
label("\(h\)", (0,-1/3),E);
+
label("\(h\)", (0,-1/3), W);
 
</asy>
 
</asy>
 +
</center>
  
Note that <math>BD= 2-r</math> since D is the center of the larger circle of radius 2
+
Note that <math>BD= 2-r</math> since <math>D</math> is the center of the larger circle of radius <math>2</math>. Using the Pythagorean Theorem on <math>\triangle BDE</math>,
 
 
Using the Pythagorean Theorem on <math>\triangle BDE</math>
 
  
<math>r^2 + h^2 = (2-r)^2</math>
+
<cmath>
 +
\begin{align*}
 +
r^2 + h^2 &= (2-r)^2 \\
 +
r^2 + h^2 &= 4 - 4r + r^2 \\
 +
h^2 &= 4 - 4r \\
 +
h &= 2\sqrt{1-r} \end{align*}</cmath>
  
<math>r^2 + h^2 = 4 - 4r + r^2</math>
+
Now using the [[Pythagorean Theorem]] on <math>\triangle BAE</math>,
  
<math>h^2 = 4 - 4r</math>
+
<cmath>
 +
\begin{align*}
 +
r^2 + (h+1)^2 &= (r+1)^2 \\
 +
r^2 + h^2 + 2h + 1 &= r^2 + 2r + 1 \\
 +
h^2 + 2h &= 2r \end{align*} </cmath>
  
<math>h = 2\sqrt{1-r}</math>
+
Substituting <math>h</math>,
  
Now Using the pythagorean theorem on <math>\triangle BAE</math>
+
<cmath>
 +
\begin{align*}
 +
(4-4r) + 4\sqrt{1-r} &= 2r \\
 +
4\sqrt{1-r} &= 6r - 4 \\
 +
16-16r &= 36r^2 - 48r + 16 \\
 +
0 &= 36r^2 - 32r \\
 +
r &= \frac{32}{36} = \frac{8}{9} \Longrightarrow \qquad \textbf{(D)} \end{align*}</cmath>
  
<math>r^2 + (h+1)^2 = (r+1)^2</math>
+
== Solution 3 ==
  
<math>r^2 + h^2 + 2h + 1 = r^2 + 2r + 1</math>
+
We can apply [[Descartes' Circle Formula]].
  
<math>h^2 + 2h = 2r</math>
+
The four circles have curvatures <math>-\frac{1}{2}, 1, \frac{1}{r}</math>, and <math>\frac{1}{r}</math>.
  
Substituting <math>h</math> in
+
We have <math>2((-\frac{1}{2})^2+1^2+\frac {1}{r^2}+\frac{1}{r^2})=(-\frac{1}{2}+1+\frac{1}{r}+\frac{1}{r})^2</math>
  
<math>(4-4r) + 4\sqrt{1-r} = 2r</math>
+
Simplifying, we get <math>\frac{10}{4}+\frac{4}{r^2}=\frac{1}{4}+\frac{2}{r}+\frac{4}{r^2}</math>
  
<math>4\sqrt{1-r} = 6r - 4</math>
+
<math>\frac{2}{r}=\frac{9}{4}</math>
  
<math>16-16r = 36r^2 - 48r + 16</math>
+
<math>r=\frac{8}{9} \Longrightarrow \qquad \textbf{(D)}</math>
  
<math>0 = 36r^2 - 32r</math>
+
==See Also==
 +
{{AMC12 box|year=2004|ab=A|num-b=18|num-a=20}}
 +
{{AMC10 box|year=2004|ab=A|num-b=22|num-a=24}}
  
<math>r = \frac{32}{36} = \frac{8}{9} \Rightarrow \qquad \textbf{(D)}</math>
+
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 23:29, 30 July 2023

The following problem is from both the 2004 AMC 12A #19 and 2004 AMC 10A #23, so both problems redirect to this page.

Problem 19

Circles $A, B$ and $C$ are externally tangent to each other, and internally tangent to circle $D$. Circles $B$ and $C$ are congruent. Circle $A$ has radius $1$ and passes through the center of $D$. What is the radius of circle $B$?

[asy] unitsize(15mm); pair A=(-1,0),B=(2/3,8/9),C=(2/3,-8/9),D=(0,0);  draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9));  label("\(A\)", A); label("\(B\)", B); label("\(C\)", C); label("\(D\)", (-1.2,1.8)); [/asy]

$\text{(A) } \frac23 \qquad \text{(B) } \frac {\sqrt3}{2} \qquad \text{(C) } \frac78 \qquad \text{(D) } \frac89 \qquad \text{(E) } \frac {1 + \sqrt3}{3}$

Video solution by Punxsutawney Phil

https://www.youtube.com/watch?v=4-lbEZkFJdc

Solution 1

[asy] import graph; size(400); defaultpen(fontsize(10)); pair OA=(-1,0),OB=(2/3,8/9),OC=(2/3,-8/9),OD=(0,0),E=(2/3,0); real t = 2.5; pair OA1=(-2+2*t,0),OB1=(4/3+2*t,16/9),OC1=(4/3+2*t,-16/9),OD1=(0+2*t,0),E1=(4/3+2*t,0); draw(Circle(OD,2)); draw(Circle(OA,1)); draw(Circle(OB,8/9)); draw(Circle(OC,8/9)); draw(OA--OB--OC--cycle); draw(OD--OB--OB+(OB-OD)*4/5); draw(OA--E); label("$O_{A}$",OA,(-1,0)); label("$O_{B}$",OB,(-1,1)); label("$O_{C}$",OC,(-1,-1)); label("$O_{D}$",OD,(-1,-1)); label("$E$",E,(0.5,-1)); label("$r$",OB+(OB-OD)*2/5,(-0.5,1)); label("$r$",(1*OA+3*OB)/4,(-0.5,1)); dot(OA^^OB^^OC^^OD^^E); draw(OA1--OB1--OC1--cycle); draw(OD1--OB1); draw(OA1--E1); label("$O_{A}$",OA1,(-1,0)); label("$O_{B}$",OB1,(1,1)); label("$O_{C}$",OC1,(1,-1)); label("$O_{D}$",OD1,(0,-1)); label("$E$",E1,(1,0)); label("$1+r$",(OA1+OB1)/2,(-0.5,1)); label("$r$",(E1+OB1)/2,(1,0)); label("$r$",(E1+OC1)/2,(1,0)); label("$2-r$",(OB1+OD1)/2,(-1,0)); label("$1$",(OA1+OD1)/2,(0,-1)); label("$x$",(E1+OD1)/2,(0,-1)); dot(OA1^^OB1^^OC1^^OD1^^E1); [/asy]

Let $O_{i}$ be the center of circle $i$ for all $i \in \{A,B,C,D\}$ and let $E$ be the tangent point of $B,C$. Since the radius of $D$ is the diameter of $A$, the radius of $D$ is $2$.


Let the radius of $B,C$ be $r$ and let $O_{D}E = x$. If we connect $O_{A},O_{B},O_{C}$, we get an isosceles triangle with lengths $1 + r, 2r$.

Then right triangle $O_{D}O_{B}O_{E}$ has legs $r, x$ and hypotenuse $2-r$. Solving for $x$, we get $x^2 = (2-r)^2 - r^2 \Longrightarrow x = \sqrt{4-4r}$.

Also, right triangle $O_{A}O_{B}O_{E}$ has legs $r, 1+x$, and hypotenuse $1+r$. Solving,

\begin{eqnarray*} r^2 + (1+\sqrt{4-4r})^2 &=& (1+r)^2\\ 1+4-4r+2\sqrt{4-4r}&=& 2r + 1\\ 1-r &=& \left(\frac{6r-4}{4}\right)^2\\ \frac{9}{4}r^2-2r&=& 0\\ r &=& \frac 89  \end{eqnarray*}

So the answer is $\boxed{\mathrm{(D)}\ \frac{8}{9}}$.

Solution 2

[asy] unitsize(15mm); pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3);  draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9)); draw(A--B--C--A); draw(B--D--C); draw(A--E);  dot(A);dot(B);dot(C);dot(D);dot(E);  label("\(D\)", D,NW); label("\(A\)", A,N); label("\(B\)", B,W); label("\(C\)", C,E); label("\(E\)", E,SE); label("\(1\)",(-.4,.7)); label("\(1\)",(0,0.5),W); label("\(r\)", (-.8,-.1)); label("\(r\)", (-4/9,-2/3),S); label("\(h\)", (0,-1/3), W); [/asy]

Note that $BD= 2-r$ since $D$ is the center of the larger circle of radius $2$. Using the Pythagorean Theorem on $\triangle BDE$,

\begin{align*} r^2 + h^2 &= (2-r)^2 \\ r^2 + h^2 &= 4 - 4r + r^2 \\ h^2 &= 4 - 4r \\ h &= 2\sqrt{1-r} \end{align*}

Now using the Pythagorean Theorem on $\triangle BAE$,

\begin{align*} r^2 + (h+1)^2 &= (r+1)^2 \\ r^2 + h^2 + 2h + 1 &= r^2 + 2r + 1 \\ h^2 + 2h &= 2r \end{align*}

Substituting $h$,

\begin{align*} (4-4r) + 4\sqrt{1-r} &= 2r \\ 4\sqrt{1-r} &= 6r - 4 \\ 16-16r &= 36r^2 - 48r + 16 \\ 0 &= 36r^2 - 32r \\ r &= \frac{32}{36} = \frac{8}{9} \Longrightarrow \qquad \textbf{(D)} \end{align*}

Solution 3

We can apply Descartes' Circle Formula.

The four circles have curvatures $-\frac{1}{2}, 1, \frac{1}{r}$, and $\frac{1}{r}$.

We have $2((-\frac{1}{2})^2+1^2+\frac {1}{r^2}+\frac{1}{r^2})=(-\frac{1}{2}+1+\frac{1}{r}+\frac{1}{r})^2$

Simplifying, we get $\frac{10}{4}+\frac{4}{r^2}=\frac{1}{4}+\frac{2}{r}+\frac{4}{r^2}$

$\frac{2}{r}=\frac{9}{4}$

$r=\frac{8}{9} \Longrightarrow \qquad \textbf{(D)}$

See Also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png