Difference between revisions of "2001 AIME I Problems/Problem 10"
m |
m |
||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Let <math>S</math> be the set of points whose coordinates <math>x,</math> <math>y,</math> and <math>z</math> are integers that satisfy <math>0\le x\le2,</math> <math>0\le y\le3,</math> and <math>0\le z\le4.</math> Two distinct points are randomly chosen from <math>S.</math> The probability that the midpoint of the segment they determine also belongs to <math>S</math> is <math>m/n,</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n.</math> | ||
== Solution == | == Solution == | ||
{{solution}} | {{solution}} | ||
+ | |||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=I|num-b=9|num-a=11}} | |
− | |||
− | |||
− | |||
− |
Revision as of 23:24, 19 November 2007
Problem
Let be the set of points whose coordinates and are integers that satisfy and Two distinct points are randomly chosen from The probability that the midpoint of the segment they determine also belongs to is where and are relatively prime positive integers. Find
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |