Difference between revisions of "2001 AIME II Problems/Problem 4"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Let <math>R = (8,6)</math>. The lines whose equations are <math>8y = 15x</math> and <math>10y = 3x</math> contain points <math>P</math> and <math>Q</math>, respectively, such that <math>R</math> is the midpoint of <math>\overline{PQ}</math>. The length of <math>PQ</math> equals <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=II|num-b=3|num-a=5}} |
Revision as of 23:40, 19 November 2007
Problem
Let . The lines whose equations are and contain points and , respectively, such that is the midpoint of . The length of equals , where and are relatively prime positive integers. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2001 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |