Difference between revisions of "1993 AIME Problems/Problem 9"
(→Solution) |
(→Solution) |
||
Line 14: | Line 14: | ||
'''Note:''' One can just substitute <math>1993\equiv-7\pmod{2000}</math> and <math>1994\equiv-6\pmod{2000}</math> to simplify calculations. | '''Note:''' One can just substitute <math>1993\equiv-7\pmod{2000}</math> and <math>1994\equiv-6\pmod{2000}</math> to simplify calculations. | ||
− | + | == Solution 2 == | |
− | |||
Two labels <math>a</math> and <math>b</math> occur on the same point if <math>\ a(a+1)/2\equiv \ b(b+1)/2\ pmod{2000}</math>. If we assume the final answer be <math>n</math>, then we have <math>\frac12(n)(n + 1)\equiv \frac12(1993)(1994) \pmod{2000}</math>. | Two labels <math>a</math> and <math>b</math> occur on the same point if <math>\ a(a+1)/2\equiv \ b(b+1)/2\ pmod{2000}</math>. If we assume the final answer be <math>n</math>, then we have <math>\frac12(n)(n + 1)\equiv \frac12(1993)(1994) \pmod{2000}</math>. | ||
Revision as of 01:04, 22 September 2023
Contents
[hide]Problem
Two thousand points are given on a circle. Label one of the points . From this point, count points in the clockwise direction and label this point . From the point labeled , count points in the clockwise direction and label this point . (See figure.) Continue this process until the labels are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as ?
Solution
The label will occur on the th point around the circle. (Starting from 1) A number will only occupy the same point on the circle if .
Simplifying this expression, we see that . Therefore, one of or is odd, and each of them must be a multiple of or .
For to be a multiple of and to be a multiple of , and . The smallest for this case is .
In order for to be a multiple of and to be a multiple of , and . The smallest for this case is larger than , so is our answer.
Note: One can just substitute and to simplify calculations.
Solution 2
Two labels and occur on the same point if . If we assume the final answer be , then we have .
Multiply on both side we have . As they have different parities, the even one must be divisible by .As , one of them is divisible by , which indicates it's divisible by .
Which leads to four different cases: ; ; and ; and . Which leads to and respectively, and only satisfied.Therefore answer is .
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.