Difference between revisions of "1996 AHSME Problems/Problem 30"
Isabelchen (talk | contribs) (→Solution 4) |
Isabelchen (talk | contribs) (→Solution 4) |
||
Line 56: | Line 56: | ||
[[File:1996AHSMEP30.png|400px|center]] | [[File:1996AHSMEP30.png|400px|center]] | ||
− | Note that <math>\overarc{AB}</math> is a third of the circumference, therefore, <math>\angle AOB = 120^{\circ}</math> | + | Note that minor arc <math>\overarc{AB}</math> is a third of the circumference, therefore, <math>\angle AOB = 120^{\circ}</math>. minor arc <math>\overarc{AB} =240^{\circ}</math>, <math>\angle ACB = 120^{\circ}</math> |
By the Law of Cosine, <math>AB = \sqrt{ 3^2 + 5^2 - 2 \cdot 3 \cdot 5 \cdot \cos 120^{\circ}} = \sqrt{ 9 + 25 + 15 } = 7</math> | By the Law of Cosine, <math>AB = \sqrt{ 3^2 + 5^2 - 2 \cdot 3 \cdot 5 \cdot \cos 120^{\circ}} = \sqrt{ 9 + 25 + 15 } = 7</math> | ||
− | <math> | + | <math>\frac{\angle AOB}{2} = 60^{\circ}</math>, therefore, <math>r = \frac{\frac{AB}{2}}{\sin 60^{\circ}} = \frac{\frac{7}{2}}{ \frac{\sqrt{3}}{2} } = \frac{7\sqrt{3}}{3}</math> |
<math>\sin \frac{\theta}{2} = \frac{\frac32}{r} = \frac{3}{2r} = \frac{3}{2 \cdot \frac{7\sqrt{3}}{3}} = \frac{3 \sqrt{3}}{14}</math> | <math>\sin \frac{\theta}{2} = \frac{\frac32}{r} = \frac{3}{2r} = \frac{3}{2 \cdot \frac{7\sqrt{3}}{3}} = \frac{3 \sqrt{3}}{14}</math> | ||
Line 66: | Line 66: | ||
Let <math>x</math> be the length of the chord, <math>\sin \frac{3 \theta}{2} = \frac{\frac{x}{2}}{r}</math> | Let <math>x</math> be the length of the chord, <math>\sin \frac{3 \theta}{2} = \frac{\frac{x}{2}}{r}</math> | ||
− | By the triple angle formula, <math>\sin \frac{3 \theta}{2} = 3 \cdot \frac{\theta}{2} - 4 \cdot (\frac{\theta}{2})^3 = 3 \cdot \frac{3 \sqrt{3}}{14} - 4 \cdot (\frac{3 \sqrt{3}}{14})^3</math> | + | By the triple angle formula, <math>\sin \frac{3 \theta}{2} = 3 \cdot \frac{\sin \theta}{2} - 4 \cdot (\frac{\sin \theta}{2})^3 = 3 \cdot \frac{3 \sqrt{3}}{14} - 4 \cdot (\frac{3 \sqrt{3}}{14})^3</math> |
<math>x = 2 \cdot \frac{7\sqrt{3}}{3} \cdot [3 \cdot \frac{3 \sqrt{3}}{14} - 4 \cdot (\frac{3 \sqrt{3}}{14})^3] = 2 \cdot \frac{7\sqrt{3}}{3} \cdot (\frac{9\sqrt{3}}{14} - \frac{82\sqrt{3}}{2 \cdot 7^3}) = 9 - \frac{81}{49} = \frac{360}{49}</math> | <math>x = 2 \cdot \frac{7\sqrt{3}}{3} \cdot [3 \cdot \frac{3 \sqrt{3}}{14} - 4 \cdot (\frac{3 \sqrt{3}}{14})^3] = 2 \cdot \frac{7\sqrt{3}}{3} \cdot (\frac{9\sqrt{3}}{14} - \frac{82\sqrt{3}}{2 \cdot 7^3}) = 9 - \frac{81}{49} = \frac{360}{49}</math> |
Revision as of 11:30, 30 September 2023
Problem
A hexagon inscribed in a circle has three consecutive sides each of length 3 and three consecutive sides each of length 5. The chord of the circle that divides the hexagon into two trapezoids, one with three sides each of length 3 and the other with three sides each of length 5, has length equal to , where and are relatively prime positive integers. Find .
Solution 1
In hexagon , let and let . Since arc is one third of the circumference of the circle, it follows that . Similarly, . Let be the intersection of and , that of and , and that of and . Triangles and are equilateral, and by symmetry, triangle is isosceles and thus also equilateral.
Furthermore, and subtend the same arc, as do and . Hence triangles and are similar. Therefore, It follows that Solving the two equations simultaneously yields so
Solution 2
All angle measures are in degrees. Let the first trapezoid be , where . Then the second trapezoid is , where . We look for .
Since is an isosceles trapezoid, we know that and, since , if we drew , we would see . Anyway, ( means arc AB). Using similar reasoning, .
Let and . Since (add up the angles), and thus . Therefore, . as well.
Now I focus on triangle . By the Law of Cosines, , so . Seeing and , we can now use the Law of Sines to get:
Now I focus on triangle . and , and we are given that , so We know , but we need to find . Using various identities, we see Returning to finding , we remember Plugging in and solving, we see . Thus, the answer is , which is answer choice .
Solution 3
Let be the desired length. One can use Parameshvara's circumradius formula, which states that for a cyclic quadrilateral with sides the circumradius satisfies where is the semiperimeter. Applying this to the trapezoid with sides , we see that many terms cancel and we are left with Similar canceling occurs for the trapezoid with sides , and since the two quadrilaterals share the same circumradius, we can equate: Solving for gives , so the answer is .
Solution 4
Note that minor arc is a third of the circumference, therefore, . minor arc ,
By the Law of Cosine,
, therefore,
Let be the length of the chord,
By the triple angle formula,
Therefore, the answer is .
See also
1996 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.