Difference between revisions of "2023 AMC 10A Problems/Problem 12"

m (Solution 1)
(Added See Also and added latex for Solution 2)
Line 1: Line 1:
 +
==Problem==
 
How many three-digit positive integers <math>N</math> satisfy the following properties?
 
How many three-digit positive integers <math>N</math> satisfy the following properties?
  
Line 24: Line 25:
 
We then use modular arithmetic:  
 
We then use modular arithmetic:  
  
[[Image:2023_10a_12.png]]
+
<cmath>\begin{align*}
 +
0&\equiv N \:(\text{mod }7)\\
 +
&\equiv500+10a+b\:(\text{mod }7)\\
 +
&\equiv3+3a+b\:(\text{mod }7)\\
 +
3a+b&\equiv-3\:(\text{mod }7)\\
 +
&\equiv4\:(\text{mod }7)\\
 +
\end{align*}</cmath>
  
 
We know that <math>0\le a,b<10</math>. We then look at each possible value of <math>a</math>:  
 
We know that <math>0\le a,b<10</math>. We then look at each possible value of <math>a</math>:  
Line 49: Line 56:
  
 
Each of these cases are unique, so there are a total of <math>1+2+1+2+1+1+2+1+2+1=\boxed{\text{(B) }14.}</math>
 
Each of these cases are unique, so there are a total of <math>1+2+1+2+1+1+2+1+2+1=\boxed{\text{(B) }14.}</math>
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=11|num-a=13}}
 +
{{MAA Notice}}

Revision as of 20:18, 9 November 2023

Problem

How many three-digit positive integers $N$ satisfy the following properties?

  • The number $N$ is divisible by $7$.
  • The number formed by reversing the digits of $N$ is divisble by $5$.


Solution 1

Multiples of $5$ always end in $0$ or $5$ and since it is a three-digit number (otherwise it would be a two-digit number), it cannot start with 0. All possibilities have to be in the range from $7 \cdot 72$ to $7 \cdot 85$ inclusive.

$85 - 72 + 1 = 14$. $\boxed{(B)}$.

~walmartbrian ~Shontai ~andliu766 ~andyluo

Solution 2 (solution 1 but more thorough + alternate way)

Let $N=\overline{cab}=100c+10a+b.$ We know that $\overline{bac}$ is divisible by $5$, so $c$ is either $0$ or $5$. However, since $c$ is the first digit of the three-digit number $N$, it can not be $0$, so therefore, $c=5$. Thus, $N=\overline{5ab}=500+10a+b.$ There are no further restrictions on digits $a$ and $b$ aside from $N$ being divisible by $7$.

The smallest possible $N$ is $504$. The next smallest $N$ is $511$, then $518$, and so on, all the way up to $595$. Thus, our set of possible $N$ is $\{504,511,518,\dots,595\}$. Dividing by $7$ for each of the terms will not affect the cardinality of this set, so we do so and get $\{72,73,74,\dots,85\}$. We subtract $71$ from each of the terms, again leaving the cardinality unchanged. We end up with $\{1,2,3,\cdots,14\}$, which has a cardinality of $14$. Therefore, our answer is $\boxed{\text{(B) }14.}$

Alternate solution:

We first proceed as in the above solution, up to $N=500+10a+b$. We then use modular arithmetic:

\begin{align*} 0&\equiv N \:(\text{mod }7)\\ &\equiv500+10a+b\:(\text{mod }7)\\ &\equiv3+3a+b\:(\text{mod }7)\\ 3a+b&\equiv-3\:(\text{mod }7)\\ &\equiv4\:(\text{mod }7)\\ \end{align*}

We know that $0\le a,b<10$. We then look at each possible value of $a$:

If $a=0$, then $b$ must be $4$.

If $a=1$, then $b$ must be $1$ or $8$.

If $a=2$, then $b$ must be $5$.

If $a=3$, then $b$ must be $2$ or $9$.

If $a=4$, then $b$ must be $6$.

If $a=5$, then $b$ must be $3$.

If $a=6$, then $b$ must be $0$ or $7$.

If $a=7$, then $b$ must be $4$.

If $a=8$, then $b$ must be $1$ or $8$.

If $a=9$, then $b$ must be $5$.

Each of these cases are unique, so there are a total of $1+2+1+2+1+1+2+1+2+1=\boxed{\text{(B) }14.}$

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png