Difference between revisions of "2023 AMC 12A Problems/Problem 23"

(Blanked the page)
(Tag: Blanking)
(import)
Line 1: Line 1:
 +
==Problem==
 +
How many ordered pairs of positive real numbers <math>(a,b)</math> satisfy the equation
 +
<cmath>(1+2a)(2+2b)(2a+b) = 32ab?</cmath>
  
 +
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math>
 +
 +
==Solution==
 +
 +
==See also==
 +
{{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Revision as of 22:59, 9 November 2023

Problem

How many ordered pairs of positive real numbers $(a,b)$ satisfy the equation \[(1+2a)(2+2b)(2a+b) = 32ab?\]

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}$

Solution

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png