Difference between revisions of "2023 AMC 12A Problems/Problem 23"
(Blanked the page) (Tag: Blanking) |
(import) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | How many ordered pairs of positive real numbers <math>(a,b)</math> satisfy the equation | ||
+ | <cmath>(1+2a)(2+2b)(2a+b) = 32ab?</cmath> | ||
+ | <math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | ==See also== | ||
+ | {{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}} | ||
+ | {{MAA Notice}} |
Revision as of 22:59, 9 November 2023
Problem
How many ordered pairs of positive real numbers satisfy the equation
Solution
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.