Difference between revisions of "2023 AMC 12A Problems/Problem 23"

(Solution)
(Solution 1: GM and AM inequality)
Line 5: Line 5:
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}</math>
  
==Solution 1: GM and AM inequality==
+
==Solution 1: AM-GM Inequality==
 +
 
 +
Using AM-GM on the two terms in each factor on the left, we get <math>(1+2a)(2+2b)(2a+b) \ge 8\sqrt(2a \cdot 4b \cdot 2ab) = 32ab</math>, meaning the equality condition must be satisfied. This means <math>1 = 2a = b</math>, so we only have <math>\boxed{1}</math> solution.
  
 
==See also==
 
==See also==
 
{{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}}
 
{{AMC12 box|ab=A|year=2023|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:18, 10 November 2023

Problem

How many ordered pairs of positive real numbers $(a,b)$ satisfy the equation \[(1+2a)(2+2b)(2a+b) = 32ab?\]

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }\text{an infinite number}$

Solution 1: AM-GM Inequality

Using AM-GM on the two terms in each factor on the left, we get $(1+2a)(2+2b)(2a+b) \ge 8\sqrt(2a \cdot 4b \cdot 2ab) = 32ab$, meaning the equality condition must be satisfied. This means $1 = 2a = b$, so we only have $\boxed{1}$ solution.

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png