Difference between revisions of "2023 AMC 12A Problems/Problem 24"

(Solution 1)
Line 12: Line 12:
  
 
~bluesoul
 
~bluesoul
 +
 +
==Video Solution 1 by OmegaLearn==
 +
https://youtu.be/0LLQW0XCKsQ
 +
  
 
==See also==
 
==See also==
 
{{AMC12 box|ab=A|year=2023|num-b=23|num-a=25}}
 
{{AMC12 box|ab=A|year=2023|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:23, 10 November 2023

Problem

Let $K$ be the number of sequences $A_1$, $A_2$, $\dots$, $A_n$ such that $n$ is a positive integer less than or equal to $10$, each $A_i$ is a subset of $\{1, 2, 3, \dots, 10\}$, and $A_{i-1}$ is a subset of $A_i$ for each $i$ between $2$ and $n$, inclusive. For example, $\{\}$, $\{5, 7\}$, $\{2, 5, 7\}$, $\{2, 5, 7\}$, $\{2, 5, 6, 7, 9\}$ is one such sequence, with $n = 5$.What is the remainder when $K$ is divided by $10$?

$\textbf{(A) } 1 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 5 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 9$

Solution 1

Consider any sequence with $n$ terms. Every 10 number has such choices: never appear, appear the first time in the first spot, appear the first time in the second spot… and appear the first time in the $n$th spot, which means every number has $(n+1)$ choices to show up in the sequence. Consequently, for each sequence with length $n$, there are $(n+1)^{10}$ possible ways.

Thus, the desired value is $\sum_{i=1}^{10}(i+1)^{10}\equiv \boxed{\textbf{(C) } 5}\pmod{10}$

~bluesoul

Video Solution 1 by OmegaLearn

https://youtu.be/0LLQW0XCKsQ


See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png