Difference between revisions of "2004 IMO Problems/Problem 4"
(solution) |
(→See also) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | (''Hojoo Lee'') Let <math>n \geq 3</math> be an integer. Let <math>t_1 | + | (''Hojoo Lee'') Let <math>n \geq 3</math> be an integer. Let <math>t_1, t_2, \dots , t_n</math> be positive real numbers such that |
<cmath>n^2 + 1 > \left( t_1 + t_2 + ... + t_n \right) \left( \frac {1}{t_1} + \frac {1}{t_2} + ... + \frac {1}{t_n} \right).</cmath> | <cmath>n^2 + 1 > \left( t_1 + t_2 + ... + t_n \right) \left( \frac {1}{t_1} + \frac {1}{t_2} + ... + \frac {1}{t_n} \right).</cmath> | ||
Line 15: | Line 15: | ||
<cmath> | <cmath> | ||
− | By [[AM-GM]], <math>\frac{t_n}{t_i} + \frac{t_i}{t_n} \ge 2</math>, so <math>f(n) \ge f(n-1) + 2(n-1) + 1 = f(n-1) + 2n - 1</math>. Then the problem is reduced to proving the statement true for <math>n-1</math> numbers, as desired. <math>\ | + | By [[AM-GM]], <math>\frac{t_n}{t_i} + \frac{t_i}{t_n} \ge 2</math>, so <math>f(n) \ge f(n-1) + 2(n-1) + 1 = f(n-1) + 2n - 1</math>. Then the problem is reduced to proving the statement true for <math>n-1</math> numbers, as desired.<math>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\square</math> |
== See also == | == See also == | ||
*<url>viewtopic.php?p=99756#99756 AoPS/MathLinks discussion</url> | *<url>viewtopic.php?p=99756#99756 AoPS/MathLinks discussion</url> | ||
+ | |||
+ | {{IMO box|year=2004|num-b=3|num-a=5}} | ||
[[Category:Olympiad Algebra Problems]] | [[Category:Olympiad Algebra Problems]] |
Latest revision as of 23:54, 18 November 2023
Problem
(Hojoo Lee) Let be an integer. Let be positive real numbers such that
Show that , , are side lengths of a triangle for all , , with .
Solution
For , suppose (for sake of contradiction) that for ; then (by Cauchy-Schwarz Inequality)
so it is true for . We now claim the result by induction; for , we have
By AM-GM, , so . Then the problem is reduced to proving the statement true for numbers, as desired.
See also
- <url>viewtopic.php?p=99756#99756 AoPS/MathLinks discussion</url>
2004 IMO (Problems) • Resources | ||
Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 5 |
All IMO Problems and Solutions |