Difference between revisions of "2000 AIME I Problems/Problem 7"

m
(Added solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Let <math>r = \frac{m}{n} = z + \frac {1}{y}</math>.
 +
 
 +
<math>
 +
\begin{align*}
 +
(5)(29)(r)&=\left(x + \frac {1}{z}\right)\left(y + \frac {1}{x}\right)\left(z + \frac {1}{y}\right)\
 +
&=xyz + \frac{xy}{y} + \frac{xz}{x} + \frac{yz}{z} + \frac{x}{xy} + \frac{y}{yz} + \frac{z}{xz} + \frac{1}{xyz}\
 +
&=1 + x + z + y + \frac{1}{y} + \frac{1}{z} + \frac{1}{x} + \frac{1}{1}\
 +
&=2 + \left(x + \frac {1}{z}\right) + \left(y + \frac {1}{x}\right) + \left(z + \frac {1}{y}\right)\
 +
&=2 + 5 + 29 + r\
 +
&=36 + r
 +
\end{align*}
 +
</math>
 +
 
 +
Thus <math>145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}</math>. So <math>m + n = 1 + 4 = \boxed{5}</math>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2000|n=I|num-b=6|num-a=8}}
 
{{AIME box|year=2000|n=I|num-b=6|num-a=8}}

Revision as of 01:17, 3 December 2007

Problem

Suppose that $x,$ $y,$ and $z$ are three positive numbers that satisfy the equations $xyz = 1,$ $x + \frac {1}{z} = 5,$ and $y + \frac {1}{x} = 29.$ Then $z + \frac {1}{y} = \frac {m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

Let $r = \frac{m}{n} = z + \frac {1}{y}$.

$(5)(29)(r)=(x+1z)(y+1x)(z+1y)=xyz+xyy+xzx+yzz+xxy+yyz+zxz+1xyz=1+x+z+y+1y+1z+1x+11=2+(x+1z)+(y+1x)+(z+1y)=2+5+29+r=36+r$ (Error compiling LaTeX. Unknown error_msg)

Thus $145r = 36+r \Rightarrow 144r = 36 \Rightarrow r = \frac{36}{144} = \frac{1}{4}$. So $m + n = 1 + 4 = \boxed{5}$

See also

2000 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions